
Some Remarks on the Incompressibility
of Width-Parameterized SAT Instances

Bangsheng Tang

Institute for Interdisciplinary Information Sciences,
Tsinghua University, 100084, Beijing
bangsheng.tang@gmail.com

Abstract. Compressibility of a formula regards reducing the length of the input,
or some other parameter, while preserving the solution. Any 3-SAT instance
on N variables can be represented by O(N3) bits; [4] proved that the instance
length in general cannot be compressed to O(N3−ε) bits under the assumption
NP �⊆ coNP/poly, which implies that the polynomial hierarchy does not col-
lapse. This note initiates research on compressibility of SAT instances parame-
terized by width parameters, such as tree-width or path-width. Let SATtw(w(n))
be the satisfiability instances of length n that are given together with a tree-
decomposition of width O(w(n)), and similarly let SATpw(w(n)) be instances
with a path-decomposition of width O(w(n)). Applying simple techniques and
observations, we prove conditional incompressibility for both instance length and
width parameters: (i) under the exponential time hypothesis, given an instance φ
of SATtw(w(n)) it is impossible to find within polynomial time a φ′ that is
satisfiable if and only if φ is satisfiable and tree-width of φ′ is half of φ; and (ii)
assuming a scaled version of NP �⊆ coNP/poly, any 3-SATpw(w(n)) instance
of N variables cannot be compressed to O(N1−ε) bits.

1 Introduction

Satisfiability(SAT) is the problem of deciding whether a given conjunctive normal
form(CNF) formula is satisfiable. Denote by n the input length of the formula, and by
N the number of variables. SAT has been playing a central role in both theoretical and
applied aspects of computer science. It is the prototypical NP-complete problem in
complexity theory, and has found enormous applications in various practical areas, e.g.
artificial intelligence, machine learning, decision making, automated theorem proving.

Although it is not possible to solve SAT in its most general form within polynomial
time unless NP �= P, there is an apparent need for practically efficient algorithms.
Real world instances often come with structure. Parameterization is a general way of
quantifying the structure. The quest for efficient algorithms for fixed parameters (fixed-
parameter tractable) has received significant attention in the past few years. One way of
parameterizing SAT is using width parameters (tree-width, path-width, branch-width,
etc.), which are graph-theoretic parameters of a graph associated with the instance.
It is shown in a series of moves, e.g. [1, 13, 12, 5, 6, 2] that width-parameterized
SAT with parameter k can be solved time-efficiently in simultaneously 2O(k)nO(1)

time and 2O(k)nO(1) space, or space-efficiently in simultaneously 2O(k logn)nO(1) time

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 192–198, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Some Remarks on the Incompressibility of Width-Parameterized SAT Instances 193

and nO(1) space. Rather involved time-space trade-off algorithms achieving better time
and space are also given in [2].

We use the term compressibility of SAT instances to refer the fact that the length
of input instance or parameters can be reduced by an efficient algorithm, in a way that
the compressed instance preserves satisfiability. Compressing input instances has been
considered in [4] under the term sparsification. The following two-player communica-
tion game between an efficient algorithm and an oracle was considered: the first player
is a verifier who has an d-CNF formula, and she wants to decide its satisfiability within
deterministic polynomial time; the second player is an oracle with unbounded compu-
tational power but without knowing the formula beforehand. The goal of this commu-
nication game is to minimize the number of bits the verifier must communicate with
the oracle, such that the verifier can decide the satisfiability of the formula. Nd bits
will suffice, because this is the total number of possible clauses and the first player
can send an Nd bit string, where the ith bit indicates whether the ith clause is present.
In [4], it is proved that the trivial way of communication is essentially optimal in the
following sense: if the satisfiability of d-CNF formulas can be decided by communi-
cation within O(Nd−ε) bits for any ε > 0, then NP ⊆ coNP/poly. How about SAT
instance of bounded width parameters? At one extreme, when the width is O(log n),
the verifier can compute satisfiability by herself without any communication; at another
end, when the width is Ω(n), the formula is in its most general form, previous result can
be applied. The technically interesting case is for the intermediate range of this width
parameter.

In this note, we focus on the compressibility of SAT instances parameterized by
two types of width parameters, i.e. tree-width and path-width. In the setting of param-
eterized problems, we can discuss compression of input instances as above, or com-
pression of parameters. Note that algorithms for parameterized problems have running
time and space super-polynomial in the chosen parameter times a polynomial of the
input instance length. Efficient compression of parameters would indicate significant
improvement in the time and space resource requirements of the state-of-the-art al-
gorithms. We show that compressing the width-parameter by a constant factor within
polynomial time is not possible under the assumption that unless exponential time hy-
pothesis (ETH) fails. ETH states that solving SAT on N variables requires 2Ω(N)

time, which is stronger than P �= NP and has important implications in computational
complexity (see e.g. [7, 8, 10]). Let NL[r(n)] be the class of problems decidable by a
logspace machine equipped with a read-only non-deterministic, polynomially long wit-
ness tape, where the machine can have O(r(n)) passes (as the head reverses) over the
witness tape. We strengthen the assumption that NP �⊆ coNP to NL[ω(1)] �⊆ coNP.
In fact, we assume further that

NL[ω(1)] �⊆ coNP/poly

to obtain an incompressibility result of input length for width-parameterized SAT.
A complexity theoretic study of this assumption is interesting on its own right, and

it is left for future work. Here are some indications on its validity: (i) the belief that
NP �⊆ coNP is because usually people think that in fact the required certificate size
blows up to exponential (not merely super-polynomial) - i.e. some kind of exhaustive

194 B. Tang

enumeration is required - and (ii) given a non-uniform advice of polynomial size will
not help either (in particular, an easy extension of Karp-Lipton shows that if NP ⊆
coNP/poly the polynomial hierarchy collapses).

Results in this note are based on preliminary observations and simple techniques.
Nevertheless, this work initiates the study of compressibility or sparsification of width-
parameterized SAT instances, and makes conceptual contributions to better
understanding the complexity of width-parameterized SAT. Techniques that work for
general instances fail dramatically for width-parameterized instances. Intuition and
speculation on why previous techniques fail are also included in this note. We believe
that improving our results is a very interesting research direction for both theory and
practice.

2 Preliminary

Notation and terminology used in this note basically follow [2].

Definition 1. Let G = (V,E) be an undirected graph. A tree decomposition of G is a
tuple (T,X), where T = (W,F) is a tree, and X = {X1, · · · , X|W |} where Xi ⊆ V

s.t. (1) ∪|W |
i=1Xi = V , (2) ∀(i, j) ∈ E, ∃t ∈ W , s.t. i, j ∈ Xt, and (3) ∀i, the set

{t : i ∈ Xt} forms a subtree of T .
Each of Xi is called a bag, the width of (T,X) is defined as maxt∈W |Xt| − 1, and

the tree-width T W(G) of graph G is defined as the minimum width over all possible
tree decompositions.

When the tree decomposition T = (W,F) is restricted to a path, the decomposition is
called path decomposition, and the specific tree-width is called path-width PW(G).

Definition 2. The incidence graph Gφ of a SAT instance φ is a bipartite graph, where
in one side of the bipartization each node is associated with a distinct unsigned vari-
able, and in the other each node is associated with a clause. There is an edge between
a clause-node and a variable-node if and only if the variable appears in a literal of the
clause.

The tree-width of a formula φ is the tree-width of its incidence graph, T W(φ) =
T W(Gφ). When it is clear from the context we may abuse notation and write T W(φ)
to denote the width of a given decomposition of Gφ. Note that any tree-decomposition
(path-decomposition) of an instance graph will have tree-width (path-width) at most N ,
because one can always construct a path of the number of the clauses, and put each
clause into a different bag arbitrarily, and copy all the variables into all the bags. This
is a valid path-decomposition, and therefore a valid tree-decomposition of width N .
Without loss of generality we assume that in number of bags is upper bounded by a
polynomial of the number of the clauses and variables. This is assured by a property
of decompositions called nice. A nice one can be constructed from any decomposition
efficiently (see e.g. [9, 3]).

Denote by SATtw(w(n)) the problem of deciding satisfiability of a CNF formula,
which is given together with a tree-decomposition of width O(w(n)) as input, where n

Some Remarks on the Incompressibility of Width-Parameterized SAT Instances 195

is input length. SATpw(w(n)) is the path-decomposition version. 3-SATtw(w(n)) and
3-SATpw(w(n)) are the variants where the input formulas are 3-CNF formulas. The
following lemma shows that there is no essential difference between 3-SATpw(w(n))
and SATpw(w(n)).

Lemma 1 ([11]). SATpw(w(n)) is reducible to 3-SATpw(w(n)), under logspace
many-to-one reductions.

Although the width parameter remains asymptotically unchanged, the number of vari-
ables is increased in the reduction. For each clause of k literals, at most k new variables
need to be introduced. Recall that we have defined the complexity class NL[r(n)],
which is of interest because it characterizes width-parameterized SAT.

Lemma 2 ([11]). SATpw(w(n)) is complete for NL[w(n)
logn], under logspace many-to-

one reductions.

As in the literature, denote by NP/poly the class of languages accepted by a non-
deterministic polynomial time Turing machine with a polynomial length advice, and
coNP/poly its complement.

3 Incompressibility

3.1 Incompressibility of Width Parameters

We start with some preliminary observations stating that no non-trivial compression can
be done to reduce the width parameter. Suppose we have an SATtw instance φ together
with an optimal tree decomposition of width T W(φ) = ω(logn). A width-compression
algorithm A with compression ratio α: 0 < α < 1, is an algorithm satisfying the
following property (*):

A takes φ and the tree decomposition as input, runs in polynomial time and
then outputs another instance φ′ along with a new tree decomposition, such
that φ is satisfiable if and only if φ′ is satisfiable, and T W(φ′) = αT W(φ).

Theorem 1. No width-compression algorithm with α = n− 1
nc (c > 1 is a constant)

for SATtw instances with tree-width ω(logn), satisfying (*) can exist, under ETH.

Proof. By ETH, deciding satisfiability of the sub-formula by picking the clauses in-
cluded in a specific bag in the decomposition in general requires 2Ω(T W(φ)) = 2ω(logn)

= nω(1) time. This also lower bounds the running time for any algorithm deciding sat-
isfiability of φ under ETH.

Suppose for the sake of contradiction, such an algorithm A exists. If we repeatedly
run A for logα T W(φ) = O(log n/ log(n− 1

nc)) = O(nc) times upon φ, we will ob-
tain an instance φ, where T W(φ) is a constant and has the same satisfiability as φ.
Satisfiability of φ and the transformation from φ to φ can be computed in polynomial
time, which in turn implies that satisfiability of φ can be decided in polynomial time.
However, this is impossible due to the super-polynomial lower bound for running time
under ETH given in the previous paragraph. �	

196 B. Tang

If we allow the tree-width of the instances be up to linear in n, namely general SAT
instances, the same incompressibility result holds, while P �= NP is sufficient for
contradiction. Namely,

Proposition 1. No width-compression algorithm with α = n− 1
nc (c > 1 is a constant)

for SATtw instances with tree-width Ω(n), satisfying (*) can exist, assumingP �= NP.

The compression ratio α = n− 1
nc is a slowly increasing function as n increases with

upper bound 1. When n is large enough, we can actually replace α with any constant,
and the following corollary holds.

Corollary 1. No width-compression algorithm with α = α0 (a constant, 0 < α0 < 1),
for SATtw instances with tree-width ω(logn), satisfying (*) exists, under ETH.

3.2 Incompressibility of Instance Length

Next we turn to the question of interactively “compressing” the instance length à la [4].
Let L be a language, denote OR(L) with k instances is the problem: given a k-tuple
(x1, x2, · · · , xk), deciding whether there is an xi, s.t. xi ∈ L. The following lemma is
crucial for the proof.

Lemma 3 ([4]). Let L be a language, with instance length n and t : Z+ → Z
+ be

polynomially bounded s.t. the problem of OR(L) with t(n) instances can be decided
by sending O(t(n) log t(n)) bits, then L ∈ coNP/poly.

Note that for 3-CNF formulas, input length n is O(N3), therefore logn = Θ(logN).
Now we are ready to state the incompressibility result for 3-SATpw(w(n)) instances,
where w(n) = Ω(log n).

Theorem 2. If satisfiability of every 3-CNF formula on N variables, with a
path-decomposition of width O(w(n)), where n is the input length, can be decided
by the verifier through communicatingO(N1−ε) bits with the oracle, then NL[w(n)

logn] ⊆
coNP/poly.

Proof. Consider an OR(3-SATpw(w(n))) instance, with t(n) 3-SATpw(w(n)) in-
stances each with N variables can be represented by a 3-SATpw(w(n)) instance with
t(n)N variables, and all the instances use different variables. We choose t(n) to be
polynomially bounded.

Suppose the instances are φi, ∀i, and each has a corresponding path-decomposition
Pi, variables vi,j , clauses Ci,j . Merely joining all the path-decompositions sequentially
will impose an AND-relation. To impose an OR-relation, additional operations are re-
quired after joining. Let a be a group of variables of length O(log n) acting as a selector,
namely, for a fixed i, (a = i) denotes the clause with semantic meaning “a representing
the binary expansion of i”. Since t(n) is a polynomial in n, O(log n) bits are suffi-
cient. For each Pi, replace each clause Ci,j by a clause representing (a = i) → Ci,j ,
or equivalently (a = i) ∨ Ci,j . To preserve the connectivity requirement of a path-
decomposition, the variables of a need to be added to each bag of the joined path.

Some Remarks on the Incompressibility of Width-Parameterized SAT Instances 197

One last problem is that each newly created clause is of O(log n) variables. To obtain a
3-SATpw(w(n)) instance, we apply the reduction by Lemma 1, blowing up the number
of variables by a factor of O(log n).

In the end, a 3-SAT instance of O(t(n)N logn) variables with path-widthO(w(n))
is constructed. Now by hypothesis, when t(n) is a large enough polynomial this in-
stance can be decided by the verifier through communicating O((t(n)N logn)1−ε) =
O(t(n) log t(n)) bits with the oracle. By Lemma 3, this means 3-SATpw(w(n)) is in
coNP/poly. Combining this and the characterization in Lemma 2 concludes the proof.

�	

The incompressibility result for width-parameterized SAT seems much weaker than
that for general SAT as in [4]. There is a crucial step called packing lemma, failed
to be applied in width-parameterized setting. The lemma describes a procedure which
combines OR of t(n) SAT instances (each of length n) into a semantically equivalent
SAT instance, without requiring large number of variables (only (t(n)n)

1
3) by allowing

the clauses corresponding to different original instances to share variables. However,
the same technique does not work in the width-parameterized setting since the same
procedure did not take width into consideration and actually will blow up the width of
resulting instance to n. Therefore, a straightforward way of combining was used in the
proof of Theorem 2 which in turn requires t(n)n variables. One direction of improving
the result will be finding a new packing technique for width-parameterized settings.

4 Conclusion

In this note, we proved two incompressibility results, one for width parameters, the
other for instance lengths. Our techniques are elementary, and future improvements
with new techniques tailored for width-parameterized SAT are left for future work.

Acknowledgments. This work was supported in part by the National Basic Research
Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Sci-
ence Foundation of China Grant 61033001, 61061130540, 61073174. The author would
like to thank Periklis Papakonstantinou for supervising this research.

References

[1] Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and Tseitin tautologies. In:
Foundations of Computer Science (FOCS), pp. 593–603. IEEE (2002)

[2] Allender, E., Chen, S., Lou, T., Papakonstantinou, P., Tang, B.: Width-parameterized sat:
Time-space tradeoffs (2012) (manuscript)

[3] Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science 209(1-2), 1–45 (1998)

[4] Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. In: Symposium on Theory of Computing (STOC),
pp. 251–260. ACM (2010)

[5] Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of
bounded tree-width or clique-width. Discrete Applied Mathematics 156(4), 511–529 (2008)

198 B. Tang

[6] Georgiou, K., Papakonstantinou, P.A.: Complexity and Algorithms for Well-Structured
k-SAT Instances. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp.
105–118. Springer, Heidelberg (2008)

[7] Impagliazzo, R., Paturi, R.: Complexity of k-sat. In: Proceedings of Fourteenth Annual
IEEE Conference on Computational Complexity, pp. 237–240. IEEE (1999)

[8] Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complex-
ity? Journal of Computer and System Sciences (JCSS) 63(4), 512–530 (2001); (also FOCS
1998)

[9] Kloks, T.: Treewidth: computations and approximations, vol. 842. Springer (1994)
[10] Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded treewidth

are probably optimal. In: 22nd ACM/SIAM Symposium on Discrete Algorithms (SODA
2011), pp. 777–789 (2011)

[11] Papakonstantinou, P.A.: A note on width-parameterized sat: An exact machine-model char-
acterization. Information Processing Letters (IPL) 110(1), 8–12 (2009)

[12] Samer, M., Szeider, S.: A fixed-parameter algorithm for# sat with parameter incidence
treewidth. Arxiv preprint cs/0610174 (2006)

[13] Szeider, S.: On Fixed-Parameter Tractable Parameterizations of SAT. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidelberg (2004)

	Some Remarks on the Incompressibility of Width-Parameterized SAT Instances

	Introduction
	Preliminary
	Incompressibility
	Incompressibility of Width Parameters
	Incompressibility of Instance Length

	Conclusion
	References

