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Abstract. A Large-scale Wireless Sensor Network (LWSN). such as an environment 
monitoring system deployed in a city, could yield data on the order  of petabytes each 
year. Storage and computation of such vast quantities of data pose difficult challenges 
to the LWSN, particularly because sensors are highly constrained by their scarce 
resources. Distributed storage and parallel processing are solutions that deal with the 
massive amount of data by utilizing the collective computational power of the large 
number of sensors, all while keeping inter-node communication minimized to save 
energy. In this chapter, we conduct a survey on the state-of-the-art of distributed 
storage and parallel processing in LWSNs. We will focus on the LWSN scenario in 
which vast amounts of data are collected prior to intensive computation on that data. 
We argue that current research results in this direction fall into three categories: 1) 
hierarchical system architecture to support parallel and distributed computation; 2) 
distributed data aggregation and storage strategies; 3) parallel processing, scheduling 
and programming methods. We highlight some important results for each of these 
categories and discuss existing problems and future directions. 
 

 
 
Introduction 
 
Recent advances in wireless communication, embedded computation, and Micro-
electromechanical Systems (MEMS) technologies have enabled large-scale wireless sensor 
networks (LWSN) to come to fruition. More and more, LWSNs are changing the way that 
people cognize the physical world, and they will be an infrastructure for future Cyber-Physical 
Systems (CPS)[1]. The concept of LWSNs was described in [2, 3]: a LWSN is a sensor 
network that contains thousands, or even tens of thousands of small sensors, which are 
distributed over a vast field to obtain fine-grained, high-precision sensing data. LWSNs are 
used in many areas [4], ranging from ecological and precision agriculture information 
monitoring to intrusion detection, surveillance, and structural integrity monitoring etc. 
However, sensors in LWSNs are typically resource-limited; they are powered by batteries and 
can only communicate with neighbors using short-range radio. For the purpose of massive data 
collection and processing, an important problem to address in LWSN is how to store data and 
subsequently conduct computation in a distributed fashion and in parallel.  
 
In practice, a LWSN could yield data in amounts approaching or exceeding petabytes each 
year. The storage, query and computation of such amounts of data by resource-limited sensors 
are a highly challenging tasks. If the (massive amount of) data is processed centrally, all data 
needs to be transmitted to a central server using multi-hop transmissions. In such cases, a 
LWSN will suffer high communication costs. More concretely, the energy complexity for data 
collection is O(m+nlogn) [5], where n is the number of nodes and m is the number of links. 



When m and n are large, sensors will deplete energy quickly thus limiting the lifetime of the 
network. A promising solution is to exploit the advantages of the distributed storage and 
parallel processing capabilities of a LWSN. Instead of transmitting data to a central server, data 
is stored and processed in-network.  This can markedly reduce the communication costs. The 
intensive computational task is decomposed into many small tasks, each of which is affordable 
to a single sensor, and computation is executed in parallel by the distributed sensors. Using 
such an approach, the “swarm intelligence” of the distributed sensors can be employed, 
computing by utilizing the cooperation of the resource-limited sensors. 
 

 
Figure 1. Summary of the research problems and their relationships in distributed and parallel 

computing in the LWSN.  
 
The distributed storage and parallel computing problem can be decomposed into four sub-
problems, each of which has attracted myriad research in recent years. Fig.1 summarizes these 
sub-problems and their relationships.  

• The fundamental problem with distributed storage and parallel computing is system 
architecture design [2, 3, 6, 7], which concentrates on energy efficient topology control 
and sensor management. Both distributed storage and parallel processing depend 
heavily on the type of network organization (topology, architecture, etc.)  

• Distributed data storage. Researchers have treated the sensor network as a distributed 
database, which has triggered a series of studies on distributed storage, indexing and 
querying [14-15, 17-19]. Distributed data storage not only saves the cost of data 
collection and transmission, but also forms the foundation for parallel processing as 
distributed data storage is the general basis for computation task decomposition.  

• The parallel processing methods. Parallel processing concentrates on how to 
decompose a computationally intensive task into many “small-sized” tasks and how to 
execute these tasks on the distributed sensors in parallel. Minimizing the 
communication cost and the execution time is the general consideration in the design of 
the parallel processing. Existing parallel processing methods include parallel fusion, 
parallel Kalman filter, etc., which were mainly designed in a case by case basis to meet 
the requirements of specific applications.  

• The Map-Reduction parallel programming model was proposed for LWSNs most 
recently, in order to provide a systematic solution for parallel processing. It aims at 
providing a general Map-Reduce framework for various applications.  

 
In this paper, we summarize the state-of-art of distributed and parallel computing in LWSNs 
from the above four categories. Our survey is different from the previous survey papers [36] 
and [37] in several ways. First, our survey presents a bottom-up summary of the distributed 
storage and parallel processing problem via the aforementioned categories of 1) fundamental 
architecture; 2) distributed storage and indexing; 3) task decomposition and parallel processing; 
and finally 4) the map-reduction based systematic approach. The relationships among these 
four aspects are also analyzed, while [37] only gives a summary of the in-network processing 
methods in LWSN and [36] focuses just on the middleware for supporting distributed services 
in sensor networks. In both [36] and [37], the studies of the relationship between the distributed 
storage and parallel processing were not discussed. This chapter reviews existing results and 
analyzes their relationships.  
 



This chapter is organized as follows. In Section 1, the motivation and desired properties of 
distributed storage and parallel processing are introduced by investigating the complexity of 
the LWSN. In Section 2, the system architecture related to distributed storage and parallel 
processing are presented. In Section 3, distributed storage, indexing, querying and in-network 
data aggregation results are reviewed and analyzed. In Section 4, task decomposition and 
parallel processing algorithms are presented. The Map-reduction based systematic 
programming model is also introduced. In Section 5, we evaluate the existing problems and 
discuss future directions.  
 
 
1. Motivation of Distributed Storage and Parallel Processing in LWSNs 
 
1.1 Desired Properties of LWSNs 
 
Scalability and longevity are the main challenges in large-scale wireless sensor networks. Let's 
consider a LWSN deployed for agriculture information monitoring. Its coverage area includes 
up to thousands of hectares, and its expected lifetime is at least several seasons--consistent with 
the growth periods of the crops. Sensors collect data periodically and report to a remote center, 
which are common scenarios in many applications of LWSNs. In these applications, the 
desired properties of the LWSN can be summarized as: 
 

1. Scalability: The data collection and processing algorithm should scale to the size of 
the network. 

2. Longevity: Wireless sensors have extreme energy limitations, but are required to work 
for a long period of time. 

3. Self-Adaptivity: The sensor network systems must be self-adapting to the network and 
environmental dynamics, such as node failures, weather or environment changes, etc. 

4. Massive Data Processing Capability: The sensor network needs to aggregate and 
process massive data of various kinds. 

 
1.2 The Complexities of the Centralized Method 
 
Some studies have focused on how the above desired functionalities can be achieved by a 
LWSN using the centralized method. This problem is investigated by studying the time and 
energy complexity of sensor networks [5]. Some recent results have shown that the network’s 
lifetime is highly dependent on the scale of the network. 

1. The energy complexity for data collection in a network is O(m+nlogn), where n is the 
number of nodes and m is the number of links. Minimizing the energy is equivalent to 
finding shortest paths from the sink to all other nodes in the network. 

2. For the data aggregation problem, total message complexity using any tree T is Θ(n), 
where n is the number of nodes of the network. 

3. For data selection in a sensor network, any deterministic distributed algorithm needs at 
least Ω(Δ+DlogDN) time to find the median of all data items, where D is diameter of 
the graph and Δ is the maximum degree of the network[5]. 

 
The above results show that a LWSN will suffer high energy usages and message complexities 
when it collects and processes data in a centralized way. Centralized algorithms for LWSNs 
lack scalability. In addition, the network lifetime is short when a LWSN is processing massive 
data in a centralized way. Furthermore, the lack of self-adaptation is also a big issue with 
centralized algorithms. Because global information and global coordination are required by 



centralized computing, centralized algorithms have difficulty adapting to dynamic changes in a 
network. 

 
1.3 Distributed Computing Will Be the Solution 
 
Distributed computing extends the traditional centralized computing by allowing 
computational components and data to be distributed across a network and seamlessly 
interoperate with each other to perform a task [8]. In LWSNs, distributed computing has many 
attractive characteristics: it is scalable, self-adapting, easy-to-implement, and recoverable. 
Distributed data storage can drastically reduce communication costs as multi-hop data 
transmission is avoided. Parallel processing not only reduces the computation burden of an 
individual sensor, but also utilizes the joint power of the great number of sensors in order to 
deal with the intensive computation task efficiently. Further, distributed computing lends itself 
to self-adaptation to environment dynamics. In distributed computing, each sensor conducts 
computing based on localized information. When the network topology changes, such as when 
a node joins or leaves, a sensor moves, or the environment changes, sensors can quickly 
respond to the changes by local computation, without global information acquisition. Therefore, 
distributed computing and parallel processing offer an effective solution to scalability, 
longevity and adaptivity problems of LWSNs [9].  
 
2. System Architecture for Distributed Computing 
 
2.1 Hierarchical LWSNs are More Scalable than Flat Ones 
 
System architecture describes how sensors are organized to cooperate and how data is 
transmitted in the network; this is the foundation of distributed storage and parallel processing.  
In simple terms, the architecture of a sensor network can be flat or hierarchical. In a flat 
architecture, all sensors are treated as equivalent peers that communicate in an ad-hoc manner. 
On the other hand, in a hierarchical architecture, sensors are organized into clusters and can 
form multiple tiers. Each cluster is composed of a set of cluster members and cluster members 
are managed by the cluster head. The cluster head can be a homogeneous node or more 
powerful heterogeneous nodes [2, 6]. When the cluster heads form a high-level new cluster, a 
multi-tiered architecture is formed. A comparison of the flat and hierarchical architecture in ad-
hoc wireless sensor networks is presented in [10]. The flat architecture generally generates a 
highly connected network, suffering from scalability issues, i.e. the number of connections 
grows O(n²) with the number of nodes n, making it impractical for the large LWSNs. In 
contrast, the distributed nature of a hierarchical network is effective for distributed storage and 
parallel processing for LWSNs. The reasons for the suitability of a hierarchical network are 
two-fold: 1) In a tiered architecture, sensors transmit data only to the local cluster head, which 
efficiently reduces multi-hop data communication complexity; 2) sensors in the sensing field 
are organized into small size subnets in the tiered architecture, and are connected by cluster 
heads, which forms a proper architecture for task decomposition and parallel processing. The 
interoperations between the subnets during parallel processing can be carried out by the cluster 
heads.  
 
2.2 Hierarchical Architecture is the Foundation for Distributed Computing 
 
The hierarchical architecture can be categorized into 2-tiered, 3-tiered and many-tiered 
architectures. Generally, increasing the number of tiers makes the network more scalable. For 
further evaluation of network architectures, network capacity [3, 7] is used to evaluate whether 
a network architecture is efficient or not. Network capacity is defined as the data collection rate 



at the sink. Studies in [3, 7] showed that both the 2-tiered and 3-tiered network architectures 
can increase the system capacities compared to the flat architecture, and that this improvement 
can be independent from the routing protocols used.  
 
In addition to the improvement of capacity, a hierarchical architecture provides efficiency for 
distributed storage and parallel processing. In [11], a motes-master type two-tier ‘Tenet’ 
network is proposed, where cluster heads are called master and cluster members are called 
motes. Multimode data fusion is implemented in the master tier, and local data capturing and 
processing are carried out by the motes. The approach emphasizes local processing of data to 
avoid sending large sequences of continuously collected data to upper layers. This method of 
data fusion improves the network's capacity and lifetime efficiently. In [12], a three-tiered 
network architecture is proposed for distributed storage and parallel processing. A general 
three-tier architecture for distributed computing in LWSNs is illustrated in Figure 2.  In the 
figure, nodes in different tiers are heterogeneous devices; although they can also be 
homogeneous. In general, increasing the number of tiers will increase the scalability 
performance of the network at the expense of requiring more time for data aggregation.   
 

 
Figure 2. Hierarchical architecture for a wireless sensor network 

 
Figure 2 shows a general, three-tiered network architecture of a LWSN. An example of how 
the distributed data storage and parallel processing is carried out by the nodes in different tiers 
is also illustrated. In this example, 

• The sensor nodes in the first tier implement the tasks of data capturing, local processing, 
and data transmission to the local leader. 

• The local leaders in the second tier carry out the tasks of data aggregation, data 
transmission, query dispatching, and local sensor management. 

• The central server in the highest decision making tier implements information fusion,  
task decomposition, and  assembly of the processed results, etc.  

 
Hierarchical architecture of a LWSN not only improves the network's scalability and capacity, 
but also offers a convenient network structure for distributed storage and parallel processing. 

 
3. Distributed Data Storage and Query in LWSN 
 
In distributed data storage and query, a LWSN is treated as a distributed database. It is different 
from traditional distributed databases because the data-centric feature is a cornerstone in 
LWSNs.  
 



First, transmitting all the data to a central server is not only energy intensive, but also not 
necessary in many applications in LWSNs. For example, in environment monitoring, users 
may care about only the average temperature of a building or whether the specific temperature 
values of several buildings are abnormal or not. For the first case, the application requirement 
will be satisfied if the local leaders send the local averaging to the central server. For the 
second case, the application requirement will be satisfied if the central server issues a query 
with spatial attributes, only needing the sensors in the particular spatial region to respond to the 
query. It is clear the application requirements in these circumstances can be satisfied by 
distributed data storage and query. 
  
Second, data plays the leading role in distributed storage and query, known as the data-centric 
feature of the wireless sensor networks. This can be seen from the aforementioned examples; 
the applications care only about the querying result and not about how/where data is stored or 
transmitted. This provides an extreme level of flexibility for the design of distributed data 
storage and indexing algorithms.  
 
3.1 Distributed Data Storage 
 
By means of the flexibility introduced by the data-centric feature, sensors can have different 
choices for distributing the stored data. A sensor can save data into its own memory, send the 
data to a local leader to store or send the data to higher tier leaders. The problem of where to 
save is generally a trade-off problem between energy efficiency and access complexity. Storing 
data locally will have no communication cost during storage, but is inefficient for querying. On 
the other hand, while data stored in a local leader or in higher tier leaders leads to efficient data 
querying, the communication costs increase for remote storage. For data centric storage, after 
an event is detected, data is stored by name (i.e., at a storage node that need not be the same as 
the detecting node) within the sensor net.  How queries can find data and how data can be 
transmitted to the central server can be handled by routing protocols such as Directed Diffusion 
[16]. If the query has geographic information embedded in it, the central server sends interests 
to specific locations; otherwise, the query is flooded throughout the network. When the data 
that matches the interest is found, it is sent to the central server along the reverse path of the 
query. 
 
We consider the case of distributed data storage in the hierarchical architecture without 
indexing, and the case of data centric storage using data indexing.  
 
Local Storage (LS)  

When data is stored in local memory, it costs O(n) for a query to find the distributively 
stored data, where n is the number of sensors and O(m) transmissions to transmit the queried 
result to the central sever, where m is the number of tiers. Since m<<n, the overall 
complexity for storing and querying a piece of data is O(n) . 
 

Hierarchical Storage without Indexing (HS) 
If data is stored in the second tier leader, it costs O( / cn n ) communications for data 
storage, where nc is the number of the second tier leaders. This is because the 
communication complexity for storing each piece of data is of the order of the diameter of 
the local cluster. If data is stored without indexing, it costs O(n) for a query to find the 
distributively stored data.  Thus, the overall complexity for storing and querying  a piece of 
data is also O(n) . 

 



 
 
Data Centric Storage with Indexing (DCS) [14, 15] 

In DCS, the communication cost to store the event is O( n ). Queries are directed to the 
node that stores events of that name, after which a response is returned; both of these occur 
at a cost of O( n ) because the communication complexity is of the order of the diameter of 
the network. The overall complexity for storing and querying a piece of data under this 
scenario is therefore O( n ) . 
 

This shows that DCS with indexing has the lowest communication complexity in data storage 
and querying. Without data indexing, the query complexity in LS and HS is O(n), i.e., if the 
queries are frequent, the sensors in the network consume energy quickly due to the complexity 
of data searching. Therefore, when the network scale is large, data indexing is necessary to 
reduce the complexity of the distributed query.  
 
3.2 Distributed Data Indexing  
 
Distributed indexing aims to reduce the complexity of a data search. The data-centric storage 
(DCS) approach, proposed in [14, 15, 17], avoids the flooding of queries. The events or the 
data are named, and then stored at a network location based on that name. The name of the data 
provides a logical rendezvous mechanism between data and queries.  
 
Geographic Hash Table (GHT) 

Authors in [15] implement a specific DCS by hashing a key k into geographic coordinates. 
Thus, queries for data of a certain type are likely to be satisfied by a small number of nodes, 
significantly improving the speed of query responses.  

 
Distributed Index for Features  (DIFS) 

DIFS [18] proposes a spatially distributed index for efficient indexing and range-based 
search. DIFS provides load-balanced communication over indexed nodes by using the 
governing property that the wider the spatial extent known to an index node, the more 
constrained the value range covered by that node.  

 
Distributed Index for Multidimensional data (DIM)  

Distributed index scheme for multidimensional data (DIM) is proposed in [19] to support 
range queries. DIM uses the idea that events whose attribute values are close are likely to be 
stored at the same or nearby nodes. The events are hashed to “locations” using the above 
idea. GPSR (Greedy Perimeter Stateless Routing [20]) routing is then applied to route events, 
and queries to the corresponding nodes in a distributed fashion.  

 
Adaptive Ring-based Index (ARI) 

The Adaptive Ring-based Index (ARI) scheme was proposed in [21] to facilitate data 
dissemination in large scale WSNs. The sensing data is collected, processed and stored at 
the nodes close to the detecting nodes, and the location information of these storing nodes is 
pushed to certain number of index nodes, which then act as the rendezvous points for sinks 
and sources. The index nodes for the same event type are connected via a set of forwarding 
nodes to form an “index ring”. The number and locations of the index nodes on an index 
ring, as well as the shape of the ring, can be adaptively changed to achieve load balance and 
optimize system performance. A lazy index updating (LIU) and a lazy index query (LIQ) 
mechanism are proposed to reduce the overhead of index updating and index querying, and 
hence improve overall system performance. 



 
Connected dominating set Based Indexing(CBI) 

Connected dominating set Based Indexing (CBI) was proposed in [22] to support scalable 
handling of large amounts of sensing data in LWSNs. In CBI sensing data is collected and 
stored at storage nodes, which form a k-hop dominating set of the whole network. 
Meanwhile, the information of high level, semantically rich data is stored and maintained at 
the index nodes formed by a connected m-hop dominating set. This leads to the ability of 
queries to only have to be routed to the appropriate index nodes instead of flooding into the 
whole network.  

 
3.3 Distributed In-network Query 
 
A sensor network can be seen as a large, distributed database where users can access data 
through queries [23, 24] by accessing the data using a query-like declarative specification 
(such as SQL). By in-network queries, laborious data collection efforts can be avoided 
allowing the LWSN to be more energy efficient. In addition, data accessing via query is more 
user-friendly. In-network querying is based on distributed data storage and distributed indexing.  
 
COUGAR System 

The first SQL-like in-network query system for sensor networks was proposed by the 
Cougar project[17]. This is based on the idea that local computing can reduce unnecessary 
traffic in sensor networks. Specifically, a new layer is introduced between the application 
and network layers, which is called query layer. The query layer on each sensor consists of a 
query proxy, which interacts with the application as well as the network layer. A query 
optimizer is located on a set of gateway nodes. This query optimizer generates query plans 
that determine which nodes are involved in routing (the data flow) and which computations 
need to be performed at which node. Each query has a leader node that performs the main 
computational task. Thus, each query generates two computation plans: one plan for the 
leader node to perform the main processing, and one plan that is disseminated to all relevant 
nodes. The COUGAR platform was implemented on Mica Mote and Sensorial demos. 
 

TinyDB System 
TinyDB [25] is a query processor implementation running on top of the TinyOS [26] 
operating system. By taking advantage of a user-friendly interface, remote users are able to 
easily query the WSN using the appropriate SQL syntax. TinyDB has some design aspects 
similar to COUGAR: TinyDB also manages a metadata catalogue to provide the information 
about the kind of readings available in the sensor network. Unlike COUGAR though, 
TinyDB allows multiple queries to be run on the same group of sensor nodes at the same 
time. TinyDB optimizes the query processing schedule at the base station, and then 
disseminates the queries into the network. TinyDB performs neighbor tracking and routing 
table maintenance.  

 
TINA: Temporal coherency-aware query 
 

TINA [27] is an enhancement over TinyDB as it introduces temporal coherency tolerance to 
reduce the amount of data transmissions. The main idea is to send the readings of sensor 
nodes only in those cases where that reading differs from the last recorded reading by more 
than some stated tolerance. In TINA the transmission interval is therefore dynamic. This 
technique is also known as DELTA [28] transmission. In TinyDB every reading is 
transmitted periodically, regardless of how close that reading was to the prior one. 
 



 
 
HQP: Hybrid Query Processing 

 
Hybrid query processing was proposed in [27], which considers both continuous queries and 
ad-hoc queries. The query performances considered by HQP are not only in regards to data 
traffic but also the overhead of query dissemination. HQP introduces a query caching 
scheme. When a continuous query is executed, its results are stored in the cache of each 
node. When an ad-hoc query is raised, the cached data can help reduce the query overhead 
and data traffic.  
 

Overall, to deal with the communication complexity of centralized data storage, distributed 
data storage, indexing and querying methods were proposed. In distributed data storage, 
distributed indexing mechanisms are necessary for reducing the communication complexity of 
queries. Data features are abstracted to build the index, and data with similar features can be 
stored in close spatial proximity. The abstracting and indexing methods also provide an 
important foundation for in-network data query systems. The main results in distributed 
storage, indexing and querying are listed in Table 1. 
 

Table 1. Summary of distributed data storage and query 
Category Solutions Properties References 

Local storage O(1)  cost in storage; O(n) for query  
Hierarchical storage without 
indexing 

 O( / cn n )  cost in storage; O(n) for query  
Storage in 
hierarchical 
network  

Data centric storage with 
indexing  

O( n ) for storage; O( n ) for query,  [14, 15] 

Geographic Hash Table (GHT) Hashing a key k into geographic 
coordinates 

[15] 

Distributed Index for Features 
(DIFS) 

Spatially distributed index for range queries [18] 

Distributed Index for 
Multidimensional data (DIM) 

Distributed index for multidimensional data 
to support range queries 

[19] 

Adaptive Ring-based Index (ARI)The index nodes for the same event type 
are connected  to form an index ring 

[21] 

Distributed 
Indexing 

Connected dominating set Based 
Indexing(CBI) 

Storage nodes form a k-hop dominating set 
of the network; Indexing nodes form a     
m-hop dominating set on the storage nodes. 

[22] 

COUGAR System The first SQL-like in-network query; 
Query optimizer  

[17] 

TinyDB System On TinyOS; SQL syntax; allows 
simultaneous multiple queries;  

[25] 

TINA: Temporal coherency-
aware query 

 Introduced temporal coherency tolerance [27] [28] 

In-Network 
query 

HQP: Hybrid query processing Considers both continuous query and ad-
hoc query 

[27] 

 
4. Parallel Processing  in LWSN 
 
In addition to data collection and querying, wireless sensor networks can execute much more 
complex computations by exploiting the parallel processing capabilities of the sensor nodes. 
Numerous researchers have studied embedded engineering algorithms, such as autoregressive 
model fitting, wavelet transforms, and fast Fourier transforms within the computational core of 
a network of wireless sensors [29]. Traditionally, such complex computations are executed by 
a central server after full collection of all the data from the sensors over the lifetime of the 



network. However, such centralized approaches are commonly communication intensive, 
limiting the lifetime of the network as communication is the most energy consuming operation 
in these kinds of networks. Parallel processing in LWSNs can offer several distinct 
improvements over traditional centralized methods:   
 

1) Decomposition of complex computational tasks into sensor affordable tasks. Because 
wireless sensors are deployed in ad-hoc networks featuring peer-to-peer communication, 
many analytical routines can be easily decentralized and distributed across a large number of 
wireless nodes with individual processing capabilities.  
 
2) Reduction of the communication cost. Parallel processing in LWSNs processes the raw 
data taken up to a given period of time locally at each sensor and transmits only the results 
of these computations to the central server, which are typically only a fraction of the size of 
raw data itself. Therefore, the amount of required communication within a sensing network 
is reduced, and power consumption and network bandwidth problems are greatly mitigated.  
 
3) Leverage of distributed computation intelligence. Although the processing capabilities of 
the individual sensors are limited, the number of sensors is massive. Leveraging the 
distributed intelligence of a great many sensors can be used to solve difficult computational 
tasks.   

 
As a result, researchers have begun to look at various parallel processing techniques for 
distributed data processing on wireless sensing networks.  
 
4.1 Task Mapping and Scheduling In Parallel Processing 
 
Task mapping and scheduling [30, 31] plays an essential role in parallel processing, which 
solves the following problems, subject to certain design objectives: assign tasks to sensors, the 
execution sequence of those tasks, and the communication schedule between sensors. 
 
Localized task mapping and scheduling is more suitable for a LWSN, because it is hard for a 
central server to maintain awareness of the network status. In localized task mapping and 
scheduling, solutions focus on the performance optimization in the hierarchical network 
architecture. 
  
In [30], an Energy-constrained Task Mapping and Scheduling (EcoMapS) method for 
clustering sensor networks was proposed. It aims to map and schedule tasks of an application 
with the minimum schedule length subject to energy consumption constraints. EcoMapS is 
based on the high-level application model that describes task dependencies through Directed 
Acyclic Graphs (DAG). A DAG is described by T = (V,E), which consists a set of vertices V 
representing the tasks to be executed and a set of directed edges E representing the 
dependencies among the tasks. If an edge eij exists between vertex i and j, vi is called the 
immediate predecessor of vj , and vj is called the immediate successor of vi.  An immediate 
successor vj depends on all its immediate predecessors such that vj cannot start execution 
before it receives results from all of its immediate predecessors. An example showing these 
kinds of task dependencies is given in Figure 3(a). The weight of a task is represented by the 
number of CPU clock cycles required to execute the task. 
 
In sensor networks, if a task vj scheduled on one node depends on a task vi scheduled on 
another node, then communication between these two nodes is required. The communication 
events between computational tasks are explicitly represented by extending the task DAG 



graphs to hyper-DAG graphs.  A node Ri is added between node vj and vi to model the 
communication dependency. Ri represents the communication task to send the result of vi to its 
immediate successors in the DAG. An example is shown in Fig3(b) in which the DAG in 
Figure 3(a) is transformed into a Hyper-DAG to model the task dependencies and the 
communication dependencies. The wireless channel is modeled as a virtual node C that 
executes one communication task at any given time instance. Hence, a cluster can be modeled 
as a star-network where all sensors only have connections with the virtual node C. 

 

   
(a) An Example DAG                     (b) Hyper-DAG Extension of (a) 

Figure. 3. DAG and Hyper-DAG Examples [30] 
 

Based on the Hyper-DAG model, EcoMapS was proposed to map and schedule tasks. 
EcoMapS has two phases: the initialization phase and the quick recovery phase. In the 
initialization phase, the authors propose a scheduling algorithm based on the wireless channel 
model and the Hyper-DAG representation of the applications. The communication scheduling 
is embedded in the scheduling algorithm to satisfy the Dependency Constraint.  In case of 
sensor failure, the schedules generated in the initialization phase will be adjusted by the Quick 
Recovery Algorithm. With these algorithms, EcoMapS minimizes the schedule lengths under 
energy consumption constraints and enables energy efficient parallel scheduling in one-hop 
clustering networks.  

 
4.2 Parallel Processing Applications in LWSN 
 
Parallel processing methods in LWSNs are mainly designed on a case by case basis for specific 
applications. However, the design criteria is similar in all these applications, i.e., reducing the 
inter-node communication while executing the computation tasks distributively and in parallel.  
Three representative applications are introduced in this chapter. 
 
NetSHM for Structure Health Monitoring 
 

Chintalapudi et al. [32] present a tiered system where data is processed distributively in-
network by powerful gateway nodes; this system was designed for structural health 
monitoring (SHM), called netSHM. Structural health monitoring techniques detect and 
locate structural damages by measuring the response of a structure to ambient vibrations or 
forced excitation. Wireless sensor networks simplify the deployment of instrumentation, and 
can eliminate cabling costs of wired networks, but are challenged by both SHM’s need for 
computationally intensive signal processing to detect and localize the structure damage and 
the need for the WSN to provide a user-friendly interface to engineers. To these ends, 
NetSHM allows structural engineers to program structure health monitoring applications in 
Matlab or C at a high level of abstraction without the need to understand the intricacies of 



wireless networking. At the same time, NetSHM leverages the hierarchical network to 
realize a novel functional decomposition for distributed and parallel signal processing. In 
NetSHM, applications are run on gateway nodes and low-tier motes are in charge of data 
collection and possible data processing. Low-tier motes transmit the raw or processed data 
to the relevant gateway node. While this method involves a top-down approach that offers a 
flexible and highly abstracted user interface, the computational capabilities of the prolific 
lower-tier motes are not fully utilized.  

 
Correlation Function Estimation Using Parallel Processing 
 

Correlation functions are an important data analysis tool used in a variety of applications 
that can be exploited to detect periodicities; measure time delay; locate disturbing sources; 
and identify propagation paths and velocities. In [33] a parallel correlation function 
estimation method was proposed in sensor networks. The communication complexity 
between the centralized and the distributed correlation function estimation are compared. 

 

 
(a) Centralized correlation function estimation 

 

 
(b) Distributed correlation function estimation  

Figure 4. Comparison of Centralized and Distributed correlation function estimation 
 

Figure 4(a) shows a case of a centralized correlation function estimation where node 1 
works as a reference sensor.  Assume  ns  nodes, including the reference node, are measuring 
the structural response.  Each node acquires data and sends the data to the reference node nd  
times for averaging. After averaging, the inverse FFT (Fast Fourier Transform) is taken to 
calculate the correlation function, whereby this calculation is performed at the reference 
nodes. When the spectral density is estimated from discrete history records of length N, data 
transmitted through the radio from the sensors to the reference node is N×nd×(ns−1) .  

 
In Figure 4(b), data communication is reduced from that in Figure 4(a) by means of the 
distribution of computation.  After the first measurement, the reference node broadcasts the 
time record to all sensors. On receiving the record, each node calculates the spectral density 
between its own data and the received record and stores the spectral density locally.  Each 
node repeats this procedure nd times. In this way, the spectral density is calculated by each 
node. Finally the inverse FFT is applied to the spectral density locally and the correlation 
function is sent back to the reference node. In this case, the total data to be transmitted is at 
most N×nd+N×(ns−1).  Therefore, the communication complexity in parallel processing is 



O(N×(nd+ns)), much more efficient than the communication complexity O(N×nd×ns) in the 
centralized method. 

 
 
Automated Modal Parameter Estimation by Parallel Processing 
 

 In [34], three output-only methods for automated modal parameter estimation are proposed, 
including peak picking, random decrement, and frequency domain decomposition. They are 
implemented distributively by a network of wireless sensor prototypes. The software 
architecture is designed to emphasize parallel data processing and minimal communication 
so as to ensure scalability and power efficiency. The authors use an example to show that, 
using distributed methods, the number of messages in parallel processing can be reduced to 
almost 1/100 of those needed by the centralized method with  peak picking, random 
decrement, and frequency domain decomposition methods. 
 
We use parallel Peak Picking (PP) as an example to introduce the implementation of the 
parallel algorithms. In PP, the user first specifies the maximum number of peaks, p, that 
should be identified. Then, a consistent set of acceleration time history data is collected at 
each sensing node and is converted to frequency response functions (FRF) using an 
embedded version of the FFT algorithm. Each node picks the p largest peaks from its 
frequency response function by scanning for frequencies at which the value of the FRF is 
significantly and consistently higher than the value of the FRF at surrounding frequencies. 
Every wireless sensor communicates its identified p peaks to the central node. The central 
node can infer a subset of p modal frequencies or some reasonable number of fewer 
frequencies from the original PP data. Once the central node has determined a global set of 
peak frequencies, it can then share its findings of modal frequencies with the rest of the 
network. This sharing of data provides all wireless sensor nodes with mode shape 
information. A graphical representation of the implementation of the PP method on a 
distributed network of wireless sensors can be seen in Figure 5. 
  

4.3 Map-Reduce based High Level Parallel Programming Model 
 
Parallel processing methods are designed on a case by case basis depending on the specific 
application. In [35], the authors proposed a MapReduce based method to build a high-level 
parallel programming framework, aiming at generalizing the parallel programming 
mechanisms for different applications.  
 
MapReduce implements parallel processing to deal with intensive computation tasks taking 
into account the hardware and software heterogeneity in a cluster. MapReduce enables 
applications with large processing power requirements to be split into smaller tasks that are 
executed in parallel on machines that are not occupied with some other task at the moment. 
The functions offered by MapReduce include a defined programming model that parallelizes 
user programs and a transparent fault-tolerance mechanism.  In [35], a complete framework for 
processing massive amounts of sensor data by MapReduce is presented. Because the 
MapReduce model is not available by existing tiny sensors, the paper considered distributed 
data storage in different clusters, and studied MapReduce programming among cluster heads.  
 
Four primitive tables were proposed to describe and implement distributed data storage: one 
for the sensor nodes, one for the sensor hardware, another for the sensor readings, and a final 
table for WSNs. These four tables can be generalized for different applications. The paper 
proposed a 2-dimensional tree that indexes the network in order to minimize the spatial search 



time. A spatial interpolation example was used to explain how the MapReduce parallel 
programming model can be implemented in LWSNs. In the example, the weights of a kriging 
function were calculated by firstly Mapping dataset and computation tasks to different clusters, 
and then Reducing is applied to give the final results. Full connections among the cluster heads 
are assumed in the paper. However, it remains an open problem of how to realize MapReduce 
programming in lower-tier nodes. 
 

 
Figure 5. Implementation of peak picking method on a network of wireless sensors [34] 

 
5. Conclusion and Discussion 
  
To deal with issues of scalability and intensive data processing in large scale wireless sensor 
networks, distributed storage and parallel processing mechanisms are proposed in the literature. 
These mechanisms implement the concepts of in-network data storage, querying and parallel 
processing. The distributed collective intelligence of a large numbers of sensors is exploited, 
and network energy is saved by reducing the communication complexity. In this chapter, we 
highlighted the following key issues:  
 

• Hierarchical network architecture is a foundation for distributed data storage and 
parallel processing. A tiered network structure can not only increase a network's 
capacity and scalability, but also supports task decomposition and parallel processing.  

• In distributed data storage, data-centric indexing plays a key role. When data is stored 
and indexed, a sensor network can be treated as a distributed database. SQL-like 
queries can thus be implemented to access each piece of data with communication 
complexity O( n ) .  



• For parallel processing in LWSNs, tasks need to be distributed to sensors and 
scheduled with considerations of latency minimization and energy efficiency. However, 
different tasks generally need unrelated decomposition methods, so parallel processing 
mechanisms are mainly studied on a case by case basis. The recently proposed 
MapReduce implements symmetrical programming techniques for parallel processing 
in LWSNs. 

In the near future, LWSNs will be increasingly deployed in many different application 
areas. At the same time, among other improvements, the individual node will offer increased 
storage and processing capacity. More intensive computation tasks can be executed by a sensor 
network, and distributed storage and parallel processing will see rapid development in this area. 
An important future direction will be the emerging of distributed storage, distributed 
processing, and sensor fusion. Symmetrical methods for distributed storage and parallel 
processing will also be an important sphere to be explored and expanded upon. Programming 
models which make network operations transparent to the users are also desired and expected 
to be developed in the future. 
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