
Faster Randomized Worst-Case Update Time for
Dynamic Subgraph Connectivity

Ran Duan1,2 and Le Zhang1,3

1 Institute for Interdisciplinary Information Sciences, Tsinghua University, China
2 duanran@mail.tsinghua.edu.cn

3 le-zhang12@mails.tsinghua.edu.cn

Abstract. Real-world networks are prone to breakdowns. Typically in
the underlying graph G, besides the insertion or deletion of edges, the
set of active vertices changes overtime. A vertex might work actively,
or it might fail, and gets isolated temporarily. The active vertices are
grouped as a set S. The set S is subjected to updates, i.e., a failed ver-
tex restarts, or an active vertex fails, and gets deleted from S. Dynamic
subgraph connectivity answers the queries on connectivity between any
two active vertices in the subgraph of G induced by S. The problem is
solved by a dynamic data structure, which supports the updates and
answers the connectivity queries. In the general undirected graph, we
propose a randomized data structure, which has Õ(m3/4) worst-case up-

date time. The former best results for it include Õ(m2/3) deterministic

amortized update time by Chan, Pǎtraşcu and Roditty [4], Õ(m4/5) by

Duan [8] and Õ(
√
mn) by Baswana, Chaudhury, Choudhary and Khan

[2] deterministic worst-case update time.

1 Introduction

Dynamic subgraph connectivity is defined as follows: Given an undirected graph
G = (V,E) having m edges, n vertices with m = Ω(n), there is a subset
S ⊆ V . The set E is subjected to edge updates of the forms insert(e, E)
or delete(e, E), where e is an edge. There are vertex updates of the forms
insert(v, S) or remove(v, S). Through vertex updates, S changes overtime. The
query is on whether any two vertices s and t are connected in the subgraph of
G induced by S.

The problem was first proposed by Frigioni and Italiano [12], and poly-
logarithmic algorithms on connectivity were described for the special case of
planar graphs. As to the general graphs, Chan [3] first described an algorithm

of deterministic amortized update time Õ(m4ω/(3ω+3))4, where ω is the matrix
multiplication exponent. Adopting FMM (Fast Matrix Multiplication) algorithm
of [6], the update time is O(m0.94). Its query time and space complexity are

Õ(m1/3) and linear, respectively. Later Chan, Pǎtraşcu, and Roditty [4] pro-

posed a simpler algorithm with the improved update time of Õ(m2/3). The

4 Õ(·) hides poly-logarithmic factors.

© Springer International Publishing AG 2017
F. Ellen et al. (Eds.): WADS 2017, LNCS 10389, pp. 337–348, 2017.
DOI: 10.1007/978-3-319-62127-2_29

337

space complexity of the new algorithm increases to Õ(m4/3). The new algorithm
is of compact description, getting rid of the use of FMM. With the same update
time, Duan [8] presented new data structures occupying linear space. Also a

worst-case deterministic Õ(m4/5) algorithm was proposed by Duan [8]. Via an
application of dynamic DFS tree [2], Baswana et al. discussed a new algorithm

with Õ(
√
mn) deterministic worst-case update time. Its query time is O(1). An

improvement of it is discussed in [5]. These results are summarized in Table 1.
A close related problem is dynamic graph connectivity, which cares only

about the edge updates. Poly-logarithmic amortized update time was first achieved
by Henzinger and King [15]. The algorithm is randomized Las Vegas. Inspired
by it, Holm et al. [16] proposed a deterministic algorithm with O(lg2 n)5 amor-
tized update time, which is now one of the classic results in the field. A cell-
probe lower bound of Ω(lg n) was proved by Pǎtraşcu and Demaine [21]. The
lower bound is amortized randomized. Near-optimal results were considered
by Thorup [22], where a randomized Las Vegas algorithm was described with
O(lg n(lg lg n)3) amortized update time. The upper bound is recently improved
to O(lg n(lg lg n)2) by Huang et al. [17]. Besides the classic deterministic O(lg2 n)
result, a faster deterministic algorithm was proposed by Wulff-Nilsen [24], of
which the update time is O(lg2 n/ lg lg n). Turning to the worst-case dynamic
connectivity, a deterministic O(

√
n) update-time algorithm is Frederickson’s

O(
√
m) worst-case algorithm [11] sped up via sparsification technique proposed

by Eppstein et al. [10]. The result holds for online updating of minimum span-
ning trees. With roughly the same structure, but different and simpler tech-
niques, Kejlberg-Rasmussen et al. [19] provided the so far best deterministic
worst-case bound of O(

√
n(lg lg n)2/ lg n) for dynamic connectivity. After the

discovery of O(
√
n) update-time algorithm, people were wondering whether any

poly-logarithmic worst-case update time algorithm is possible, even random-
ized. The open problem stands firmly for many years. A breakthrough should
be attributed to Kapron et al. [18]. Their algorithm is Monte-Carlo, with poly-
logarithmic worst-case update time. It has several improvements until now, as
done in [13, 23]. For subgraph connectivity, the trivial update time of Õ(n) fol-
lows from Kapron et al.’s algorithm. The query time of it for subgraph connectiv-
ity can also be improved to O(1), as the explicit maintenance of connected com-

ponents can be done without blowing up the Õ(n) update time. Very recently,
Wulff-Nilsen [25] gave a Las Vegas data structure maintaining a minimum span-
ning forest in expected worst-case time polynomially faster than Θ(n1/2) w.h.p.
per edge update. An independent work of Nanongkai and Saranurak [20] showed
an algorithm with O(n0.49306) worst-case update time w.h.p..

1.1 Our Results

The former Õ(m4/5) deterministic worst-case subgraph connectivity structure
adopted as a sub-routine the O(

√
n) deterministic worst-case algorithm for dy-

namic graph connectivity. Now the randomized poly-logarithmic worst-case con-

5 We use lg x to denote log2 x.

338 R. Duan and L. Zhang

Table 1. Results on Dynamic Subgraph Connectivity

Update time Query time Notes

Õ(m4ω/(3ω+3)) Õ(m1/3)
Amortized,

deterministic, linear space [3]

Õ(
√
mn) O(1)

Worst case,

deterministic, space Õ(m) [2, 5]

Õ(m2/3) Õ(m1/3)
Amortized,

deterministic, space Õ(m4/3) [4]

Õ(m2/3) Õ(m1/3)
Amortized,

deterministic, linear space [8]

Õ(m4/5) Õ(m1/5)
Worst case,

deterministic, space Õ(m) [8]

Õ(m3/4) Õ(m1/4)
Worst case,

randomized, linear space, this paper

nectivity structures for dynamic graph connectivity are discovered. We consider
the question of whether it brings progress in subgraph connectivity. The an-
swer is affirmative. But it does not come by simple replacement. More precisely,
we tried in vain to get an improvement by carefully tuning the former setting
of the Õ(m4/5) algorithm. Intuitively, the amortized Õ(m2/3) update time was
achieved partially because it uses the connectivity structure of poly-logarithmic
amortized update time. Now poly-logarithmic worst-case algorithms are discov-
ered, it seems that the Õ(m2/3) worst-case update time is in sight. Nonetheless,

we found that it is still hard to get the Õ(m2/3) update time. Until now we ob-

tain the update time of Õ(m3/4). The main contribution is a new organization
of the auxiliary data structures.

The Õ(
√
mn) result comes from dynamic DFS tree [2, 5], which is a periodic

rebuilding technique with fault tolerant DFS trees. Our result is always no worse
than Õ(

√
mn) as n = Ω(m1/2). Faster query time can be traded with slower

update time for the bottom four results in Table 1. As to our result, Õ(m3/4+ε)

update time and Õ(m1/4−ε) query time can be implemented. Note that the trade-
offs are in one direction, i.e. better query time with worse update time, but not
vice-versa. Consequently, the former Õ(m4/5) algorithm never gives update time

of Õ(m3/4). The trade-off phenomenon is definitely hard to break, as indicated by
the OMv (Online Boolean Matrix-Vector Multiplication) conjecture proposed by
Henzinger et al. [14], which rules out polynomial pre-processing time algorithms
with the product of amortized update and query time being o(m). Based on the
conjecture of no truly subcubic combinatorial boolean matrix multiplication,
Abboud and Williams [1] showed that any combinatorial dynamic algorithm
with truly sublinear in m query time and truly subcubic in n preprocessing time
must have Ω(m1/2−δ) update time for all δ > 0 unless the conjecture is false.
Our result is grouped as the following theorem.

Faster Randomized Worst-Case Update Time for Dynamic Subgraph Connectivity 339

Theorem 1.1 (Main Theorem) Given a graph G = (V,E), there is a data
structure for the dynamic subgraph connectivity, which has the worst-case vertex
(edge) update time Õ(m3/4), query time Õ(m1/4), where m is the number of
edges in G, rather than in the subgraph of G induced by S. The answer to each
query is correct if the answer is “yes”, and is correct w.h.p. if the answer is
“no.” The pre-processing time is Õ(m5/4), and the space usage is linear.

2 Preliminaries

Theorem 2.1 ([19]) A spanning forest F of G can be maintained by a de-
terministic data structure of linear space, with O(

√
m(lg lg n)2/lg n) worst-case

update time for an edge update in G, and constant query time to determine
whether two vertices are connected in G.

Theorem 2.2 ([18, 23]) There is a randomized data structure on dynamic
graph connectivity, which supports the worst-cast time O(lg4 n) per edge inser-
tion, O(lg5 n) per edge deletion, and O(lg n/ lg lg n) per query. For any constant
c the answer to each query is correct if the answer is “yes” and is correct with
probability ≥ 1 − 1/nc if the answer is “no.” The pre-processing time of it is
O(m lg3 n+ n lg4 n).

Moving to subgraph connectivity, here we consider only the case of vertex
updates, with the extension to edge updates deferred to the full paper [9]. Hence
temporarily G is assumed to be static, as E does not change if there are no
edge updates. The vertex updates change S. Initially, G is slightly modified to
keep m = Ω(n) during its lifetime, i.e., for every v ∈ V , insert a new vertex
v′ and a new edge (v, v′). The variant graph has m = Ω(n), which facilitates
the presentation of time and space complexity as functions of m in the case of
degenerate graphs.

3 The Data Structure

We give some high-level ideas, which originate from [4]. Main difficulties are the
update of S (recall that S is the set of active vertices) incurred by the high-
degree vertices, as their degrees are too high to explicitly delete their incident
edges one by one. Nonetheless, if the low-degree vertices had been removed,
the graph became smaller, and consequently former high-degree vertices were
not high-degree anymore. Hence our aim is to remove the low-degree vertices.
After that, some artificial edges are added to restore the loss of connectivity
due to the removal of the low-degree vertices. Next a dynamic connectivity data
structure is maintained on the modified graph, i.e., the graph with the low-
degree vertices removed, and the artificial edges added. Besides, as S evolves
dynamically, we need to update the artificial edges accordingly. Hence the point
is how to maintain these artificial edges consistently and efficiently. We now move
to the details. We partition V according to their degrees in G. Use degG(v) to
denote the degree of v in G.

340 R. Duan and L. Zhang

– C: Vertices with degG(v) > m1/2

– B: Vertices with m1/4 < degG(v) ≤ m1/2

– A: Vertices with degG(v) ≤ m1/4

Denote C ∩ S, B ∩ S, and A ∩ S as VC , VB , and VA respectively. Consider
the subgraph GA of G induced by VA. Define the degree of a component as
the sum of degG(v)’s for v’s in it. According to the degrees of the components,
partition the components of GA into two types: high component, with its degree
> m1/4; low component, with its degree ≤ m1/4. A spanning forest FA of GA is
maintained by the deterministic connectivity structure of Theorem 2.1.

3.1 Path Graph

A path graph inserts some artificial edges to reflect the “are connected” relation
of the vertices within VB via directly linking with a component of GA. We give
a more elaborate analysis based on [8]. W.l.o.g. assume V = {0, . . . , n − 1}.
Consider a spanning tree T of FA.

– subpath tree: For v ∈ T , identify the set of vertices in VB that are adjacent to
v. Store the set of vertices in a balanced search tree, which has the worst-case
O(lg n) update time for the well-known search-tree operations [7]. Name the
search tree as the subpath tree of v. Given the subpath tree of v, a sequence
of artificial edges is added to link the vertices stored in the subpath tree of
v. The sequence of artificial edges constitutes a subpath.

– path tree: Given T ∈ FA, group all v ∈ T with the non-empty subpath tree
as a balanced search tree, ordered by the Euler-tour order of T . Name it
as the path tree of T . As each vertex stored in the path tree of T has an
associated subpath, these subgraphs are also concatenated one by one via
the artificial edges, generating a path. To emphasize its difference from an
ordinary path, it is referred to as the path graph of VB w.r.t. T . An example
is shown in Fig. 1.

Lemma 3.1 The path graphs can be updated in Õ(m1/2) time for a vertex update

in VB, and in Õ(1) time for a link or cut on FA.

Proof. We categorize the analysis into two cases.

– Reflect a vertex update in VB : Suppose v ∈ VB is removed from S. The case
of insertion is similar. v has ≤ m1/2 edges adjacent to FA. Consider (v, w)
with w ∈ T . We locate w in the path tree of T . Now the subpath associated
with w is known. Update the subpath of w by removing v from the subpath.
If v happens to be the first or the last vertex on the subpath, the path graph
of T is also updated. As the subpaths and the path graph are concerned
with the nodes stored in the subpath trees and the path tree respectively,
which are all balanced search trees, the removal of (v, w) needs Õ(1) time.

The removal of all such (v, w)’s requires Õ(m1/2) time.

Faster Randomized Worst-Case Update Time for Dynamic Subgraph Connectivity 341

2

3

6

15

10

14

1 5

9

8

12

13

〈1, 5, 8, 13, 12, 9〉
ET-order

〈1, 12, 9〉

〈2, 15〉 〈3, 15〉

〈4, 10, 14〉

T in GA

Part of VB

4

7

11

Fig. 1. The path graph of VB w.r.t. a spanning tree T in FA. The dashed edges represent
edges between VB and VA. The path tree is on sequence 〈1, 12, 9〉, and three subpath
trees are on sequences 〈2, 15〉, 〈4, 10, 14〉, and 〈3, 15〉 respectively. The resulted path
graph is a path 〈2, 15, 4, 10, 14, 3, 15〉.

– Reflect a link or cut on FA: We only discuss the edge cut on FA. The edge
link is similar. Assume the edge cut is (v, w) ∈ T , and the Euler tour of T
is 〈L1, (v, w), L2, (w, v), L3〉 (The details can be found in the full paper [9].).
After the cut of (v, w), the Euler tours for the two resulted trees are 〈L1, L3〉
and 〈L2〉. We can determine the first vertex a and the last vertex b of 〈L2〉.
With the order tree of T (discussed in the full paper [9]), the predecessor of
a and the successor of b in the path tree of T can be found in O(lg2 n) time.
With the predecessor and the successor, the path tree of T is split. After the
split, O(1) edges in the path graph are removed to reflect the split of the

path tree of T . As a conclusion, the path graph can be updated in Õ(1) time
to reflect a link or cut on FA.

��

3.2 Adjacency Structure

Given T ∈ FA and v ∈ C, we want a data structure that provides the fast query
of whether T and v are adjacent, i.e., whether an edge (u, v) exists with u ∈ T .
We give a more elaborate analysis based on [8]. Assuming v ∈ C, the adjacency
structure of v contains the following search trees.

– sub-adjacency tree: Given T ∈ FA, identify the set of vertices in T that are
adjacent to v. Store the set of vertices as a balanced search tree, ordered
by the Euler-tour order of T . Name the balanced search tree as the sub-
adjacency tree of v w.r.t. T .

– adjacency tree: Identify T ∈ FA by the smallest vertex in T . Group all
T ∈ FA, w.r.t. which v has non-empty sub-adjacency trees, as a balanced
search tree. Name the balanced search tree as the adjacency tree of v.

The sub-adjacency trees and the adjacency tree of v constitute the adjacency
structure of v w.r.t. FA. The query aforementioned is answered by checking

342 R. Duan and L. Zhang

whether T is in the adjacency tree of v. Note v ∈ C, rather than ∈ VC . The
adjacency structure of v ∈ C w.r.t. FA is maintained even if v /∈ S.

Lemma 3.2 The adjacency structures of C w.r.t. FA can be renewed in Õ(m1/2)
time for a link or cut on FA. Given a query of whether v ∈ C is adjacent to
T ∈ FA, it can be answered in Õ(1) time.

Proof. We only discuss the edge cut on FA. The edge link is similar. The adja-
cency structures of the vertices in C are renewed one by one. Consider v ∈ C.
Suppose the edge cut occurs on T , splitting T into T1 and T2. We check whether
T is in the adjacency tree of v. If “no”, the update is done; if “yes”, remove T
from it, and update the sub-adjacent tree of v w.r.t. T to reflect the edge cut on
T . For Tj (j = 1, 2), add Tj into the adjacent tree of v if it is adjacent to v (de-
termined by whether a sub-adjacent tree of v exists w.r.t. Tj). For every vertex
in C, we need to check and update when necessary. Hence the total update time
is Õ(m1/2), since |C| is O(m1/2). The query is answered by checking whether T
is in the adjacency tree of v. ��

3.3 The Whole Structure

Now we turn to the discussion of the whole structure of our result. First, VA is
removed. After that some artificial vertices and edges are added to the subgraph
of G induced by VB ∪ C, resulting in a graph H. (Note that we include the
vertices in C \ S, rather than just VC , which is C ∩ S.) The artificial vertices
and edges are used to restore the loss of connectivity due to the removal of VA.
Recall that the components of GA are either low or high. We describe how the
artificial edges or vertices are added as follows.

– Added by the path graphs: For T ∈ FA, construct the path graph of VB

w.r.t. T .
– Added by the high components: For a high component P ∈ GA, add a meta-

vertex. For v ∈ C adjacent to P , add an artificial edge between v and the
meta-vertex. Identify the first vertex of the path graph of VB w.r.t. T , where
T is the spanning tree of P . Add an artificial edge between the first vertex
and the meta-vertex.

– Added by the low components: For a low component Q ∈ GA, construct a
complete graph within the vertices in C that are adjacent to Q. Similarly as
above, identify the first vertex of the path graph of VB w.r.t. T , where T is
the spanning tree of Q. Add the artificial edges between the first vertex and
the vertices in C that are adjacent to Q.

After these, H can be defined as follows.

– The vertex set V (H) of H: VB ∪C ∪M , where M is the set of meta-vertices.
Since the degree of a high component is > m1/4, and the vertices in VB ∪C
are of degree > m1/4, H has O(m3/4) vertices.

Faster Randomized Worst-Case Update Time for Dynamic Subgraph Connectivity 343

C

VB

VA

Fig. 2. An example of the whole structure. The irrelevant edges within VA, VB , and
C are omitted for clarity. The solid edges are the edges in G, while the dotted edges
denote the artificial edges. The grey vertex in the VB layer indicates a meta-vertex. The
left component of VA is low; whereas the right one is high. We construct a complete
graph within the vertices in C w.r.t. the low component.

– The edge set E(H) of H: The original edges of G within VB ∪ C, and the
artificial edges.

Figure 2 gives an example for the construction. H is a multigraph. Use
D[u, v] > 0 of edge multiplicity to represent the edge (u, v) ∈ E(H). The main-
tenance of D[u, v]’s is discussed later. Now we construct a graph G∗, based on
H.

– The vertex set V (G∗) of G∗: VB ∪ VC ∪M .
– The edge set E(G∗) of G∗: The edges (u, v)’s with D[u, v] > 0, where u, v ∈

V (G∗), u �= v.

G∗ is a variant of the subgraph of H induced by VB ∪ VC ∪M . It excludes
the vertices in C \ S, i.e., only the vertices in VC of C are contained. Besides,
the multiple edges are substituted by the single ones. G∗ is a simple graph. The
randomized connectivity structure of Theorem 2.2 is maintained on G∗.

About the D[u, v]’s aforementioned, a balanced search tree is used to store
them, with D[u, v] indexed by u + nv (assuming u ≤ v). Only D[u, v] > 0 is
stored in the search tree. Along the process of the updates, we might increment
or decrement D[u, v]’s. When D[u, v] decrements to 0, we remove it from the
search tree. If both u and v are the vertices in G∗ and u �= v, the edge (u, v)
is deleted from G∗. Similar updates works for incrementing. G∗ captures the
property of connectivity, which is stated in the following lemma.

Lemma 3.3 For any two vertices u, v ∈ VB ∪ VC , they are connected in the
subgraph of G induced by S if and only if they are connected in G∗.

Proof. G∗ is a variant of the subgraph ofG induced by S.G∗ removes VA from the
subgraph. Connectivity within VB via VA is restored by the path graphs. Connec-
tivity within VC via VA is restored either by linking with the same meta-vertex,

344 R. Duan and L. Zhang

or by the complete graph constructed. Lastly, for the connectivity between VC

and VB via VA, it is restored by the first vertex of the path graph linking with
the meta-vertex, or with all the relevant vertices in VC . Consider a path between
u and v in the subgraph induced by S, the segments of the path consisting only
of the vertices in VA can be eliminated, as the “via VA” connectivity is restored
as discussed. The lemma follows. ��

3.4 Update and Query

The difficulty of the vertex updates is to keep D[u, v]’s being consistent with S.
As E(G∗) is a subset of the (u, v)’s with D[u, v] > 0, it might also need to be
updated.

Lemma 3.4 The whole structure constructed has the worst-case vertex update
time Õ(m3/4).

Proof. We discuss the various cases of vertex updates, categorized according to
whether v ∈ A, or ∈ B, or ∈ C.

– v ∈ A: Consider the case of inserting v into S. v is first inserted as a singleton
component containing only v inGA. Next the edges incident on v are restored
in the following order: First, the edges between v and C; second, the edges
between v and VB ; third, the edges between v and VA.
Restore the edges between v and C: For every u adjacent to v where u ∈ C,
construct a sub-adjacency tree (containing only v) of u, and insert v into
the adjacency tree of u. Next the complete graph within these u’s in C is
constructed. Because degG(v) ≤ m1/4, i.e. a low component, the update time

is Õ(m1/2), dominated by constructing the complete graph.
Restore the edges between v and VB : Construct the subpath tree and the
path tree of v. Add the path-graph edges associated with v (Add means
incrementing the corresponding entry D[u, v]), and the edges between the
first vertex of the path graph and the vertices in C that are adjacent to v.
The update time is Õ(m1/4).

Restore the edges between v and VA: Õ(
√
m) deterministic data structure

maintaining FA is updated in Õ(m3/4) time. As degG(v) ≤ m1/4, the link or
cut on FA happens O(m1/4) times. Consequently, according to Lemma 3.1,

the path graphs are updated in Õ(m1/4) time. According to Lemma 3.2, the

adjacency structures are updated in Õ(m3/4) time.
O(m1/4) components ofGA are affected. For every high component, using the
adjacency structures, the edges between C and the meta-vertex (correspond-

ing to the high component) can be determined in Õ(m1/2) time according to
Lemma 3.2, since |C| = O(m1/2); for every low component, as the degree of

a low component is ≤ m1/4, Õ(m1/2) time suffices to construct the complete
graph within the vertices in C that are adjacent to the low component, and
Õ(m1/4) time suffices to construct the edges between the first vertex of the

Faster Randomized Worst-Case Update Time for Dynamic Subgraph Connectivity 345

path graph w.r.t. the low component and the vertices in C that are adja-
cent to the low component. Hence no matter whether the component is low
or high, the update time is Õ(m1/2). The time needed to update all these

components is Õ(m3/4). Deleting of v ∈ S from S is a reverse process. In

summary, a vertex update of v ∈ A requires Õ(m3/4) time.
– v ∈ B: Consider the case when v ∈ S is removed. The case of insertion is the

reverse. First destroy the edges between v and VA. According to Lemma 3.1,
the path graphs can be updated in Õ(m1/2) time. Besides, v might be the
first vertex of some path graphs. We see how it is updated. v can be adjacent
to ≤ m1/2 components of GA, as degG(v) ≤ m1/2. For a high component, as
only one edge linking v with the meta-vertex, the update is easy; for a low
component, since only ≤ m1/4 edges can be outward for a low component,
Õ(m1/4) time suffices for updating the edges between v and the vertices in C
that are adjacent to the low component. Hence the update time for v being
the first vertex of some path graphs is Õ(m3/4). Until now the artificial edges
concerning v are removed. Other edges concerning v are the original edges
in G. Hence we can remove these original edges one by one in Õ(m1/2) time

as degG(v) ≤ m1/2. In summary, the total update time of v ∈ B is Õ(m3/4).

– v ∈ C: As there are only O(m3/4) vertices in G∗, the update time is Õ(m3/4).
The relevant D[u, v]’s are left intact, and the adjacency structure of v is not

destroyed (if v is removed from S). The total update time is Õ(m3/4).
��

The query algorithm is as follows: Given u, v ∈ S, the goal is to substitute
them with the equivalent vertices in G∗, where an equivalent vertex of u (or v)
is a vertex in G∗ that is connected with u (or v). As V (G∗) = VB ∪ VC ∪M , if
u, v ∈ VB ∪VC , the search for the equivalent vertices is done. Otherwise, if u (or
v) is in a high component, replace u (or v) with the meta-vertex corresponding
to the high component; if u (or v) is in a low component, exhaustively search
the outward edges of the low component for a vertex of G∗. When the equivalent
vertex of u (or v) cannot be found, it indicates that u (or v) is in a low component
of GA, and the low component is not connected with any vertex in VB ∪ VC .
Intuitively u (or v) is on an “island” of GA.

Lemma 3.5 The time complexity of the query algorithm is Õ(m1/4). The an-
swer to every query is correct if the answer is “yes”, and is correct w.h.p. if the
answer is “no”.

Proof. Connectivity withinG∗ is answered by the randomized connectivity struc-
ture on G∗; whereas for the other cases, u and v are connected if and only if they
are in the same component of GA, of which the queries can be answered by the
deterministic connectivity structure on GA. The time complexity is dominated
by the exhaustive search if u (or v) is in a low component, and thus is Õ(m1/4).

The correctness can be analyzed as follows. If u, v ∈ VB ∪VC , it follows from
Lemma 3.3; otherwise, for any one not in, we only replace it with an equivalent
vertex of G∗. If such an equivalent vertex cannot be found, the queried vertex is

346 R. Duan and L. Zhang

on an island aforementioned of GA. Then u and v are connected if and only if
they are on the same island. We analyze the error probability. A deterministic
connectivity structure is adopted for GA. FA is always a spanning forest of GA.
The queries are answered either by the deterministic connectivity structure if
at least one queried vertex is on an island aforementioned of GA, or by the
randomized connectivity structure if both queried vertices are (replaced with)
the vertices inG∗. The deterministic connectivity structure always gives the right
answer; whereas the randomized one might answer erroneously. The randomized
algorithm of [18] maintains a private witness of a spanning forest of G∗. The
algorithm has the property that after every update, the witness is a spanning
forest of G∗ with probability ≥ 1 − 1/nc. It is the property which ensures the
answers are correct w.h.p.. Here, after every vertex update (which is transformed
into a sequence of edge updates in G∗), the witness for G∗ is also a spanning
forest of G∗ w.h.p. after the vertex update. We can just focus on the correctness
of the witness at the point after the last transformed edge update. Consequently,
the error probability is negligible, i.e., ≤ 1/nc for any constant c. ��

The proofs of the pre-processing time being Õ(m5/4), and the space usage
being linear can be found in the full paper [9]. Hence Theorem 1.1 follows.

Acknowledgments. This work was supported in part by the National Basic
Research Program of China Grant 2011CBA00300, 2011CBA00301, the National
Natural Science Foundation of China Grant 61033001, 61361136003. R. Duan is
supported by a China Youth 1000-Talent grant.

References

[1] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply
strong lower bounds for dynamic problems. In IEEE 55th Annual Symposium
on Foundations of Computer Science, pages 434–443. IEEE, 2014.

[2] Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz
Khan. Dynamic DFS in undirected graphs: breaking the O(m) barrier. In Pro-
ceedings of the twenty-seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 730–739. SIAM, 2016.

[3] Timothy M. Chan. Dynamic subgraph connectivity with geometric applications.
In Proceedings of the thiry-fourth annual ACM Symposium on Theory of Comput-
ing, pages 7–13. ACM, 2002.

[4] Timothy M. Chan, Mihai Pǎtraşcu, and Liam Roditty. Dynamic connectivity:
Connecting to networks and geometry. SIAM Journal on Computing, 40(2):333–
349, 2011.

[5] Lijie Chen, Ran Duan, Ruosong Wang, and Hanrui Zhang. Improved algorithms
for maintaining DFS tree in undirected graphs. CoRR, abs/1607.04913, 2016.

[6] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251 – 280, 1990. Computa-
tional algebraic complexity editorial.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

Faster Randomized Worst-Case Update Time for Dynamic Subgraph Connectivity 347

[8] Ran Duan. New data structures for subgraph connectivity. In Automata, Lan-
guages and Programming, pages 201–212. Springer, 2010.

[9] Ran Duan and Le Zhang. Faster worst-case update time for dynamic subgraph
connectivity. CoRR, abs/1611.09072, 2016.

[10] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig.
Sparsification–a technique for speeding up dynamic graph algorithms. Journal
of the ACM, 44(5):669–696, 1997.

[11] Greg N. Frederickson. Data structures for on-line updating of minimum spanning
trees, with applications. SIAM Journal on Computing, 14(4):781–798, 1985.

[12] Daniele Frigioni and Giuseppe F. Italiano. Dynamically switching vertices in
planar graphs. Algorithmica, 28(1):76–103, 2000.

[13] David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic graph
connectivity with improved worst case update time and sublinear space. CoRR,
abs/1509.06464, 2015.

[14] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. Unifying and strengthening hardness for dynamic problems via the
online matrix-vector multiplication conjecture. In Proceedings of the forty-seventh
Annual ACM on Symposium on Theory of Computing, pages 21–30. ACM, 2015.

[15] Monika R. Henzinger and Valerie King. Randomized fully dynamic graph algo-
rithms with polylogarithmic time per operation. Journal of the ACM, 46(4):502–
516, 1999.

[16] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Poly-logarithmic de-
terministic fully-dynamic algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. Journal of the ACM, 48(4):723–760, 2001.

[17] Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic
connectivity in O(log n(log log n)2) amortized expected time. In Proceedings of
the twenty-eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
2017.

[18] Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity
in polylogarithmic worst case time. In Proceedings of the twenty-fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1131–1142. SIAM, 2013.

[19] Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup.
Faster worst case deterministic dynamic connectivity. In Proceedings of the twenty-
fourth Annual European Symposium on Algorithms, 2016.

[20] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with
worst-case update time: Adaptive, Las Vegas, and O(n1/2−ε)-time. In Proceedings
of the forty-ninth Annual ACM on Symposium on Theory of Computing, 2017.

[21] Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe
model. SIAM Journal on Computing, 35(4):932–963, 2006.

[22] Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of
the thirty-second annual ACM Symposium on Theory of Computing, pages 343–
350, 2000.

[23] Zhengyu Wang. An improved randomized data structure for dynamic graph con-
nectivity. CoRR, abs/1510.04590, 2015.

[24] Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity.
In Proceedings of the twenty-fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1757–1769, 2013.

[25] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved
worst-case update time. In Proceedings of the forty-ninth Annual ACM on Sym-
posium on Theory of Computing, 2017.

348 R. Duan and L. Zhang

	29 Faster Randomized Worst-Case Update Time for Dynamic Subgraph Connectivity
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 The Data Structure
	3.1 Path Graph
	3.2 Adjacency Structure
	3.3 The Whole Structure
	3.4 Update and Query

	References

