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Abstract
Object-based approaches for learning action-
conditioned dynamics has demonstrated promise
for generalization and interpretability. However,
existing approaches suffer from structural limi-
tations and optimization difficulties for common
environments with multiple dynamic objects. In
this paper, we present a novel self-supervised
learning framework, called Multi-level Abstrac-
tion Object-oriented Predictor (MAOP), which
employs a three-level learning architecture that
enables efficient object-based dynamics learning
from raw visual observations. We also design a
spatial-temporal relational reasoning mechanism
for MAOP to support instance-level dynamics
learning and handle partial observability. Our re-
sults show that MAOP significantly outperforms
previous methods in terms of sample efficiency
and generalization over novel environments for
learning environment models. We also demon-
strate that learned dynamics models enable effi-
cient planning in unseen environments, compa-
rable to true environment models. In addition,
MAOP learns semantically and visually inter-
pretable disentangled representations.

1. Introduction
Model-based deep reinforcement learning (DRL) has re-
cently attracted much attention for improving sample ef-
ficiency of DRL (Heess et al., 2015; Schmidhuber, 2015;
Gu et al., 2016; Racanière et al., 2017; Finn & Levine,
2017). One of the core problems for model-based DRL is
to learn action-conditioned dynamics models through in-
teracting with environments. Pixel-based approaches have
been proposed for such dynamics learning from raw visual
perception, achieving remarkable performance in training

*Equal contribution 1Institute for Interdisciplinary Information
Sciences, Tsinghua University, Beijing, China. Correspon-
dence to: Guangxiang Zhu <guangxiangzhu@outlook.com>,
Jianhao Wang <jh-wang15@mails.tsinghua.edu.cn>, Zhizhou
Ren <rzz16@mails.tsinghua.edu.cn>, Chongjie Zhang
<chongjie@tsinghua.edu.cn>.

Preprint. Work in progress.

environments (Oh et al., 2015; Watter et al., 2015; Chiappa
et al., 2017).

To unlock sample efficiency of model-based DRL, learn-
ing action-conditioned dynamics models that generalize
over unseen environments is critical yet challenging. Finn
et al. (2016) proposed a dynamics learning method that
takes a step towards generalization over object appearances.
Zhu et al. (2018) developed an object-oriented dynamics
predictor to support efficient learning and generalization.
However, due to structural limitations and optimization dif-
ficulties, these methods do not efficiently generalize over
environments with multiple controllable and uncontrollable
dynamic objects and different static object layouts.

To address these limitations, this paper presents a novel self-
supervised, object-oriented dynamics learning framework,
called Multi-level Abstraction Object-oriented Predictor
(MAOP). This framework simultaneously learns disentan-
gled object representations and predicts object motions con-
ditioned on their historical states, their interactions to other
objects, and an agent’s actions. To reduce the complexity
of such concurrent learning and improve sample efficiency,
MAOP employs a three-level learning architecture from the
most abstract level of motion detection, to dynamic instance
segmentation, and to dynamics learning and prediction. A
more abstract learning level solves an easier problem and
has lower learning complexity, and its output provides a
coarse-grained guidance for a less abstract learning level,
improving its speed and quality of learning. This multi-level
architecture is inspired by humans’ multi-level motion per-
ception from cognitive science studies (Johansson, 1975; Lu
& Sperling, 1995; Smith et al., 1998) and multi-level abstrac-
tion search in constraint optimization (Zhang & Shah, 2016).
In addition, we design a novel CNN-based spatial-temporal
relational reasoning mechanism for MAOP, which includes
a Relation Net to reason about spatial relations between
objects and an Inertia Net to learn temporal effects. This
mechanism offers a disentangled way to handle physical
reasoning in settings with partial observability.

Our results show that MAOP significantly outperforms pre-
vious methods for learning dynamics models in terms of
sample efficiency and generalization over novel settings
with multiple controllable and uncontrollable dynamic ob-
jects and different object layouts. MAOP enables model
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learning from few interactions with environments and ac-
curately predicting the dynamics of objects as well as raw
visual observations in previously unseen environments. The
learned dynamics model enables an agent to directly plan in
unseen environments without retraining. In addition, MAOP
learns disentangled representations and gains visually and
semantically interpretable knowledge, including meaningful
object masks, accurate object motions, disentangled rela-
tional reasoning process, and controllable factors. Last but
not least, MAOP provides a general multi-level framework
for learning object-based dynamics model from raw visual
observations, offering opportunities to easily leverage well-
studied object detection methods (e.g., Mask R-CNN (He
et al., 2017)) in the area of computer vision.

2. Related Work
Object-oriented reinforcement learning has received
much research attention, which exploits efficient representa-
tions based on objects and their interactions. This learning
paradigm is close to that of human cognition in the phys-
ical world and the learned object-level knowledge can be
efficiently generalized across environments. Early work
on object-oriented RL requires explicit encodings of object
representations, such as relational MDPs (Guestrin et al.,
2003), OO-MDPs (Diuk et al., 2008), object focused q-
learning (Cobo et al., 2013), and Schema Networks (Kansky
et al., 2017). In this paper, we present an end-to-end, self-
supervised neural network framework that automatically
learns object representations and dynamics conditioned on
actions and object relations from raw visual observations.

Action-conditioned dynamics learning aims to address
one of the core problems for model-based DRL, i.e., con-
structing an environment dynamics model. Several pixel-
based approaches have been proposed for learning how an
environment changes in response to actions through unsuper-
vised video prediction and achieve remarkable performance
in training environments (Oh et al., 2015; Watter et al., 2015;
Chiappa et al., 2017). Fragkiadaki et al. (2016) propose
an object-centric prediction method to learn the dynamics
model when given the object localization and tracking. Finn
et al. (2016) propose an action-conditioned video prediction
method that explicitly models pixel motion and learns in-
variance to object appearances. Recently, Zhu et al. (2018)
propose an object-oriented dynamics learning paradigm to
support efficient learning. However, it focuses on environ-
ments with a single dynamic object. In this paper, we take a
further step towards efficient learning of object-oriented dy-
namics model in more general environments with multiple
dynamic objects and also demonstrate its usage for model-
based planning. In addition, we design an instance-aware
dynamics mechanism to support instance-level dynamics
learning and handle partial observations.

Relation-based deep learning approaches make signifi-
cant progress in a wide range of domains such as physical
reasoning (Chang et al., 2016; Battaglia et al., 2016; van
Steenkiste et al., 2018), computer vision (Watters et al.,
2017; Wu et al., 2017), natural language processing (San-
toro et al., 2017), and reinforcement learning (Zambaldi
et al., 2018; Zhu et al., 2018). Relation-based nets intro-
duce relational inductive biases into neural networks, which
facilitate generalization over entities and relations and en-
ables relational reasoning (Battaglia et al., 2018). This
paper proposes a novel spatial-temporal relational reason-
ing mechanism, which includes an Inertia Net for learning
temporal effects in addition to a CNN-based Relation Net
for reasoning about spatial relations.

Instance Segmentation has been one of the fundamental
problems in computer vision. Instance segmentation can be
regarded as the combination of semantic segmentation and
object localization. Many approaches have been proposed
for instance segmentation, including DeepMask (Pinheiro
et al., 2015), InstanceFCN (Dai et al., 2016), FCIS (Li et al.,
2017), and Mask R-CNN (He et al., 2017). Most models
are supervised learning and require a large labeled training
dataset. Liu et al. (2015) proposes a weakly-supervised ap-
proach to infer object instances in foreground by exploiting
dynamic consistency in video. In this paper, we design a self-
supervised, three-level approach for learning dynamic rigid
object instances. At the most abstract level, foreground de-
tection produces region proposals for instance segmentation.
The instance segmentation level then learns coarse dynamic
instance segmentation. This coarse instance segmentation
provides a guidance for learning accurate instances at the
dynamics learning level, whose instance segmentation con-
siders not only object appearances but also motion predic-
tion conditioned on object-to-object relations and actions.

3. Multi-level Abstraction Object-oriented
Predictor (MAOP)

In this section, we will present a novel self-supervised deep
learning framework, aiming to learn object-oriented dynam-
ics models that are able to efficiently generalize over unseen
environments with different object layouts and multiple dy-
namic objects. Such a generalized object-oriented dynamics
learning approach requires simultaneously learning object
representations and motions conditioned on their historical
states, their interactions to other objects, and an agent’s
actions. This concurrent learning is challenging for an end-
to-end approach in complex environments. Evidences from
cognitive science studies (Johansson, 1975; Lu & Sperling,
1995; Smith et al., 1998) show that human beings are born
with prior motion perception ability (in Cortical area MT)
of perceiving moving and motionlessness, which enables
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Figure 1. Multi-level dynamics learning framework. From a bottom-up view, we first perform motion detection to produce foreground
masks. Then, we utilize the foreground masks as dynamic region proposals to guide the learning of dynamic instance segmentation.
Finally, we use the learned dynamic instance segmentation networks (Instance Splitter and Merging Net) as a guiding network to generate
region proposals of dynamic instances and guide the learning of Object Detector at the level of dynamics learning. We provide a
pseudocode that sketches out this multi-level framework in Appendix Algorithm A1.

learning more complex knowledge, such as object-level dy-
namics prediction. Inspired by these studies, we design a
multi-level learning framework, called Multi-level Abstrac-
tion Object-oriented Predictor (MAOP), which incorporates
motion perception levels to assist in dynamics learning.

Figure 1 illustrates three levels of MAOP framework: dy-
namics learning, dynamic instance segmentation, and mo-
tion detection. Here we present them from a top-down
decomposition view. The dynamics learning level is an
end-to-end, self-supervised neural network, aiming to learn
object representations and instance-level dynamics, and pre-
dict the next visual observation conditioned on object-to-
object relations and an agent’s action. To guide the learning
of the object representations and instance localization at
the level of dynamics learning, the more abstracted level of
dynamic instance segmentation learns a guiding network in
a self-supervised manner, which can provide coarse mask
proposals of dynamic instances. This level exploits spatial-
temporal information of locomotion property and appear-
ance patterns to capture region proposals of dynamic in-
stances. To facilitate the learning of dynamic instance seg-
mentation, MAOP employs the more coarse-grained level of
motion detection, which detects changes in image sequences
and provides guidance on proposing regions potentially con-
taining dynamic instance. As the learning proceeds, the
knowledge distilled from the more coarse-grained level are
gradually refined at the more fine-grained level by consid-

ering additional information. When the training is finished,
the coarse-grained levels of dynamic instance segmentation
and motion detection will be removed at the testing stage. In
the rest of this section, we will describe in detail the design
of each level and their connections.

3.1. Object-Oriented Dynamics Learning Level

The semantics of this level is formulated as learning an
object-based dynamics model with region proposals gen-
erated from the more abstracted level of dynamic instance
segmentation. Its architecture is shown at the top level of
Figure 1, which is an end-to-end neural network and can be
trained in a self-supervised manner. It takes a sequence of
video frames and an agent’s actions as input, learns disentan-
gled representations (including objects, relations and effects)
and dynamics of controllable and uncontrollable dynamic
object instances conditioned on actions and object relations,
and produces predictions of raw visual observations. The
whole architecture includes four major components: A) an
Object Detector that learns to decompose the input image
into objects; B) an Instance Localization module responsi-
ble for localizing dynamic instances; C) a Dynamics Net for
learning the motion of each dynamic instance conditioned
on the effects from actions and object-level spatial-temporal
relations; and D) a Background Constructor that computes
a background image from learned static object masks. In
addition to Figure 1, we further provide Appendix Algo-
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Figure 2. Architecture of Dynamics Net (left) and its component Effect Net (right). Different classes of objects are distinguished by
different letters (e.g., A, B, ... , F). Dynamics Net has one Effect Net for each class of objects. An Effect Net consists of one Inertia Net
and several Relation Nets.

rithm A2 to describe interactions of these components and
the learning paradigm of object-based dynamics, which is a
general framework and agnostic to the concrete form of each
component. In the following paragraphs, we will describe
detailed design of each component.

Object Detector and Instance Localization Module. Ob-
ject Detector is a CNN module aiming to learn object masks
from a sequence of input images. An object mask describes
a spatial distribution of a class of objects, which forms the
fundamental building block of our object-oriented frame-
work. Considering that instances of the same class are
likely to have different motions, we append an Instance
Localization Module to Object Detector to localize each dy-
namic instance to support instance-level dynamics learning.
Class-specific object masks in conjunction with instance
localization bridge visual perception (Object Detector) with
dynamics learning (Dynamics Net), which allows learning
objects based on both appearances and dynamics.

Specifically, Object Detector receives image It ∈ RH×W×3

at timestep t and then outputs object masks Ot ∈
[0, 1]H×W×nO , including dynamic object masks Dt ∈
[0, 1]H×W×nD and static object masks St ∈ [0, 1]H×W×nS ,
where H and W denote the height and width of the input
image, nD and nS denotes the maximum possible num-
ber of dynamic and static object classes respectively, and
nO = nD + nS . Entry Ou,v,i indicates the probabil-
ity that pixel Iu,v,: belongs to the i-th object class. The
Instance Localization module uses learned dynamic ob-
ject masks to identify each object instance mask Xt

:,:,i ∈
[0, 1]HM×WM (1 ≤ i ≤ nM ), where HM and WM denote
the height and width of the bounding box of this instance
and nM denotes the maximum possible number of localized
instances. As shown in Figure 1, Instance Localization first

samples a number of bounding boxes on dynamic object
masks and then select the regions, each of which contains
only one dynamic instance. As we focus on the motion of
rigid objects, the affine transformation is approximatively
consistent for all pixels of each dynamic instance mask.
Inspired by this, we define a discrepancy loss Linstance for
a sampled region that measures motion consistence of its
pixels and use it as a selection score for selecting instance
masks. To compute this loss, we first compute an average
rigid transformation of a sampled region between two time
steps, then apply this transformation to this region at the
previous time step by using Spatial Transformer Network
(STN) (Jaderberg et al., 2015), and finally compared this
predicted region with the region at the current time (the
difference is measured by l2 distance). Obviously, when a
sampled region contains exactly one dynamic instance, this
loss will be extremely small, and even zero when object
masks are perfectly learned. More details of region pro-
posal sampling and instance mask selection can be found in
Appendix Section 3.

Dynamics Net. Dynamics Net is designed to learn instance-
level motion effects of actions, object-to-object spatial rela-
tions (Relation Net) and temporal relations of spatial states
(Inertia Net), and to reason about the motion of each dy-
namic instance based on these effects. Its architecture is
illustrated as Figure 2, where the motion of each dynamic
instance is individually computed. We take as an example
the computation of the motion of the i-th instance Xt

:,:,i to
illustrate the detailed structure of the Effect Net.

As shown in the right subfigure of Figure 2, Effect Net
first uses a sub-differentiable tailor module introduced by
Zhu et al. (2018) to enable the inference of dynamics focus-
ing on the relations with neighbour objects. This module
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crops a w-size “horizon” window from the concatenated
masks of all objects Ot centered on the expected location
of Xt

:,:,i, where w denotes the maximum effective range of
relations. Then, the cropped object masks are concatenated
with constant x-coordinate and y-coordinate meshgrid map
(to make networks more sensitive to the spatial information)
and fed into corresponding Relation Nets (RN) according
to their classes. We use Ct

:,:,i,j to denote the cropped mask
that crops the j-th object class Ot

:,:,j centered on the ex-
pected location of the i-th dynamic instance (the class it
belongs to is denoted as ci, 1 ≤ ci ≤ nD). The effect
of object class j on class ci, Et(ci, j) ∈ R2×na (na de-
notes the number of actions) is calculated as, Et(ci, j) =

RNci,j

(
concat

(
Ct

:,:,i,j ,Xmap,Ymap
))
. Note that there are

total nD ×nO RNs for nD ×nO pairs of object classes that
share the same architecture but not their weights. To handle
the partial observation problem, we add an Inertia Nets (IN)
to learn self-effects of an object class through historical
states, Et

self(ci) = INci

(
concat

(
Xt

:,:,i,X
t+1
:,:,i , . . . ,X

t+h
:,:,i

))
,

where h is the history length. There are total nD INs for nD
dynamic object classes, which share the same architecture
but not their weights. To predict the motion vector mt

i ∈ R2

for the i-th dynamic instance, all these effects are summed
up and then multiplied by the one-hot coding of action at ∈
{0, 1}na , that is, mt

i =
((∑

j E
t(ci, j)

)
+Et

self(ci)
)
· at.

Background Constructor. This module constructs the
static background of an input image based on the static
object masks learned by Object Detector, which is then com-
bined with the predicted dynamic instances to predict the
next visual observation. As Object Detector can decompose
its observation into objects in an unseen environment with a
different object layout, Background Constructor is able to
generate a corresponding static background and support the
visual observation prediction in novel environments. Specif-
ically, Background Constructor maintains a background
memory B ∈ RH×W×3 which is continuously updated with
the static object mask learned by Object Detector. Denot-
ing α as the decay rate, the updating formula is given by,
Bt = αBt−1 + (1− α)It

∑
i S

t
:,:,i, and B0 = 0.

Prediction and Training Loss. Based on the learned
masks and motions of the object instances, we pro-
pose an object-oriented prediction loss, Lpred-object =∑

i

wwSTN
(

(ūi, v̄i)
t,mt

i

)
− (ūi, v̄i)

t+1
ww2

2
, where (ūi, v̄i)

t

is the excepted location of i-th instance mask Xt
:,:,i at

timestep t. To utilize the information of ground-true fu-
ture frames, we also use a conventional image prediction
loss. In our model, the prediction of the next frame is
produced by merging the learned object motions and the
background Bt. The pixels of a dynamic instance can
be calculated by masking the raw image with the corre-
sponding instance mask and we can use STN to apply the

learned instance motion vector mt
i on these pixels. First,

we transform all the dynamic instances according to the
learned instance-level motions. Then, we merge all the
transformed dynamic instances with the background image
calculated from Background Constructor to generate the
prediction of the next frame. In this paper, we use the pixel-
wise l2 loss to restrain image prediction error, denoted as
Lpred-image. In addition, we add a proposal loss to utilize the
dynamic instance proposals for guiding the learning, which
is given by Lproposal =

ww∑
i(D

t
:,:,i − Pt

:,:,i)
ww2

2
, where P

denotes the dynamic instance region proposals provided
by the level of dynamic instance segmentation. Therefore,
the total loss of the dynamics learning level is given by,
LDL = Lpred-object + λ1Lpred-image + λ2Lproposal.

3.2. Dynamic Instance Segmentation Level

This level aims to generate region proposals of dynamic
instances to guide the learning of object masks and facilitate
instance localization at the level of dynamics learning. The
architecture is shown in Figure 1. Instance Splitter aims
to identify regions, each of which potentially contains one
dynamic instance. To learn to divide different dynamic ob-
ject instances onto different masks, we use the discrepancy
loss Linstance described in Section 3.1 to train Instance Split-
ter. Considering that one object instance may be split into
smaller patches on different masks, we append a Merging
Net (i.e., a two-layer CNN with 1 kernel size and 1 stride) to
Instance Splitter to learn to merge masks. This module uses
a merging loss Lmerge that aims to merge mask candidates
that are adjacent and share the same motion. In addition, we
add a foreground proposal loss Lforground to encourage atten-
tions on dynamic regions provided by the level of motion
detection, which is defined similar to Lproposal at the level of
dynamics learning. The total loss of this level is given by,
LDIS = Linstance + λ3Lmerge + λ4Lforground.

Although the network structure of this level is similar to
Object Detector in the level of dynamics learning, we do
not integrated them together as a whole network because
concurrent learning of both object representations and dy-
namics model is not stable. Instead, we first learn the coarse
object representations only based on the spatial-temporal
consistency of locomotion and appearance pattern, and then
use them as proposal regions to guide object-oriented dy-
namics learning at the more fine-grained level, which in turn
fine-tunes the object representations. In addition, MAOP is
also readily to incorporate Mask R-CNN (He et al., 2017) or
other off-the-shelf supervised object detection methods (Liu
et al., 2018) as a plug-and-play module into our framework
to generate region proposals of dynamic instances.
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3.3. Motion Detection Level

At this level, we employ foreground detection to detect po-
tential regions of dynamic objects from a sequence of image
frames and provide coarse dynamic region proposals for
assisting in dynamic instance segmentation. In our experi-
ments, we use a simple unsupervised foreground detection
approach proposed by Lo & Velastin (2001). Our frame-
work is also compatible with many advanced unsupervised
foreground detection methods (Lee, 2005; Maddalena et al.,
2008; Zhou et al., 2013; Guo et al., 2014) that are more
efficient or more robust to moving camera. These complex
foreground detection methods have the potential to improve
the performance but are not the focus of this work.

4. Experiments
We compare MAOP with state-of-the-art action-conditioned
dynamics learning baselines, AC Model (Oh et al., 2015),
CDNA (Finn et al., 2016), and OODP (Zhu et al., 2018). AC
Model adopts an encoder-LSTM-decoder structure, which
performs transformations in hidden space and constructs
pixel predictions. CDNA explicitly models pixel motions
to achieve invariance to appearance. OODP is designed
for class-level dynamics and tries to simultaneously learn
object-based representations, relations and motion effects.

4.1. Generalization Ability and Sample Efficiency

We first evaluate zero-shot generalization and sample effi-
ciency on Monster Kong from Pygame Learning Environ-
ment (Tasfi, 2016), which allows us to test generalization
ability over various scenes with different layouts. It is the ad-
vanced version of that used by Zhu et al. (2018), which has
a more general and complex setting. The monster wanders
around and breathes out fires randomly, and the fires also
move with some randomness. The agent randomly explores
with actions up, down, left, right, jump and noop. All these
dynamic objects interact with the environment and other ob-
jects according to the underlying physics engine. Moreover,
gravity and jump model has a long-term dynamics effects,
leading to a partial observation problem. To test whether
our model can truly learn the underlying physical mecha-
nism behind the visual observations and perform relational
reasoning, we set the k-to-m zero-shot generalization exper-
iment (Figure 3), where we use k different environments for
training and m different unseen environments for testing.

Unseen environments for testingTraining

Figure 3. An Example of 1-to-3 zero-shot generalization.

To make a sufficient comparison with previous methods on
object dynamics learning and video prediction, we conduct
1-5, 2-5 and 3-5 generalization experiments with a variety of
evaluation indices. We use n-error accuracy to measure the
performance of object dynamics prediction, which is defined
as the proportion that the difference between the predicted
and ground-true agent locations is less than n pixel. We also
add an extra pixel-based measurement (denoted by object
RMSE), which compares the pixel difference near dynamic
objects between the predicted and ground-truth images.

Figure 4. The performance of object dynamics prediction in un-
seen environments as training progresses on 3-to-5 generalization
problem of Monster Kong. Since we use the first 20k samples
to train the level of dynamic instance segmentation, the curve of
MAOP starts at iteration 20001.

As shown in Table 1, MAOP significantly outperforms other
methods in all experiment settings in terms of generalization
ability and sample efficiency of object dynamics learning. It
can achieve 90% 0-error accuracy in unseen environments
even trained with 3k samples from a single environment,
while other methods have a much lower accuracy (less than
45%). In addition, MAOP with only 3k training samples
outperforms CDNA using 300k samples. Although AC
Model achieves high accuracy in training environments,
its performance in unseen scenes is much worse, which
is probably because its pure pixel-level inference easily
leads to overfitting. CDNA performs better than AC
Model, but still cannot efficiently generalize with limited
training samples. Since OODP has structural limitation and
optimization difficulty, it has innate difficulty on frames
with multiple dynamic objects. In Figure 4 and Appendix
Figure A3, we also plot the learning curve of these
models. Compared to other models, MAOP achieves higher
prediction accuracy for unseen environments at a faster
rate during the training process. We further add a video
(https://github.com/maop2019/maop2019/
blob/master/PredictionVideo/video.avi)
for better perceptual understanding of prediction perfor-
mance in unseen environments.

We also evaluate MAOP on Flappy Bird and Freeway.
Flappy Bird is a side-scroller game with a moving cam-
era. Freeway is an Atari game, which has a large number

https://github.com/maop2019/maop2019/blob/master/PredictionVideo/video.avi
https://github.com/maop2019/maop2019/blob/master/PredictionVideo/video.avi
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Table 1. Prediction performance on Monster Kong. k-m means the k-to-m generalization problem. § indicates training with only 3000
samples. ALL represents all dynamic objects. The first column shows the number of samples used for training the models.

Models
Training environments Unseen environments

1-5§ 1-5 2-5 3-5 1-5§ 1-5 2-5 3-5

Agent All Agent All Agent All Agent All Agent All Agent All Agent All Agent All

MAOP 3k 100k 100k 100k - - - -
Training OODP 3k 200k 200k 200k - - - -
Samples AC Model 3k 500k 500k 500k - - - -

CDNA 3k 300k 300k 300k - - - -

MAOP 0.95 0.92 0.98 0.95 0.99 0.96 0.99 0.95 0.94 0.90 0.97 0.92 0.98 0.93 0.99 0.94
0-error OODP 0.15 0.15 0.18 0.16 0.22 0.17 0.26 0.20 0.14 0.15 0.20 0.15 0.18 0.15 0.26 0.18

accuracy AC Model 0.01 0.36 0.87 0.94 0.80 0.93 0.77 0.92 0.01 0.20 0.08 0.16 0.30 0.48 0.45 0.66
CDNA 0.28 0.62 0.77 0.84 0.78 0.82 0.78 0.84 0.26 0.44 0.79 0.80 0.78 0.78 0.81 0.83

MAOP 24.58 21.96 21.97 23.04 29.67 27.22 25.55 24.30
Object OODP 65.63 66.44 66.66 64.73 65.46 67.41 67.78 64.95
RMSE AC Model 71.02 18.88 22.39 21.30 77.24 57.41 55.45 43.48

CDNA 40.92 24.52 24.37 24.18 51.08 37.15 27.67 25.33

of dynamic objects. Since the testing environments will be
similar with the training ones without limitation of samples,
we limit the training samples to form a sufficiently challeng-
ing generalization task. MAOP still outperforms existing
baseline methods (Table 2), which demonstrates that MAOP
is effective for the concurrent dynamics prediction of a large
number of objects. In addition, we conduct a modular test
to better understand the contribution of each learning level
(see Appendix Section 4). The results show that each level
of MAOP can independently perform well and has a good
robustness to the proposals generated by the more abstracted
level. Taken together, the above results demonstrates that
MAOP has superiority of sample efficiency and general-
ization ability, which suggests MAOP is good at relational
reasoning and learns the object-level dynamics, rather than
learn some patterns from mass data to recover the dynamics
as the conventional neural networks do.

Table 2. Accuracy of dynamics prediction on Flappy Bird and
Freeway. Since only the agent’s ground-true location is accessible
in Arcade Learning Environment, we just show the dynamics
prediction of the agent. Actually, we observe that predictions of
other dynamic objects are also accurate by comparing predicted
with ground-true images (Appendix Figure A5).

Models
Flappy Bird (0-acc) Freeway (Agent)

100 samples 300 samples 100 samples

Agent All Agent All 0-acc 1-acc 2-acc

MAOP 0.83 0.89 0.83 0.92 0.78 0.84 0.89
OODP 0.01 0.18 0.02 0.15 0.26 0.33 0.42

AC Model 0.03 0.18 0.04 0.23 0.31 0.38 0.42
CDNA 0.13 0.77 0.30 0.81 0.42 0.43 0.47

4.2. Model-Based Planning in Unseen Environments

Although RL has achieved considerable successes, most
RL researches tend to “train on the test set” (Nichol et al.,
2018; Pineau, 2018). It is critical yet challenging to develop
model-based RL approaches that support generalization over
unseen environments. Monte Carlo tree search (MCTS)
(Browne et al., 2012) is developed to leverage the environ-
ment models to conduct efficient lookahead search, which

has shown remarkable effectiveness on long-term planning,
such as AlphaGo (Silver et al., 2016). Considering that our
learned dynamics model can efficiently generalize to unseen
environments, we can directly use our learned model to
perform MCTS in unseen environments. To perform long-
range planning, we first test our performance of long-range
prediction, as shown in Table 3. MAOP only trained for
1-step prediction can achieve 90% 2-error accuracy in un-
seen environments when predicting 3 steps of the future,
while the accuracy is 73% when predicting 6 steps of the fu-
ture, which is also a satisfactory performance for lookahead
search. Appendix Figure A7 illustrates a case visualizing
the 6-step prediction of MAOP in unseen environments.

Table 3. Long-range prediction of MAOP in unseen environments
on Monster Kong. MAOP is trained for 1-step prediction in 3 envi-
ronments and tested for 3-step and 6-step prediction in 5 unseen
environments.

0-acc 1-acc 2-acc

Agent All Agent All Agent All

3-steps 0.81 0.81 0.89 0.87 0.93 0.90

6-steps 0.50 0.53 0.66 0.67 0.74 0.73

We evaluate our performance of model-based planning on
Monster Kong. In this game, the goal of the agent is to
approach the princess and a reward will be given when the
straight-line distance from agent to princess gets smaller
than that in the agent’s history. The value of such a reward
is proportional to the shrinking distance. The agent will
win with an extra reward +5 when touching the princess,
and lose with an extra reward -5 when hitting the fires. To
gain a better understanding of the contribution of MAOP
to the MCTS agent, we compare MCTS in conjunction
with MAOP to DQN (Mnih et al., 2015) and to an abla-
tion (i.e., using the real simulator of the unseen environ-
ments in MCTS). We provide the same ground-true reward
functions for all dynamics model during MCTS. We con-
duct random experiments in 5 unseen environments, where
the agent and the princess randomly generate. Such a set-
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ting is extremely hard for DQN even testing in the train-
ing environments, thus we reduce the difficulty for DQN
by fixing the princess and shaping the reward function
from a POMDP to MDP. As shown in Table 4, MAOP
achieves almost the same performance with the true envi-
ronment model for model-based planning in unseen envi-
ronments and significantly outperforms DQN. The model-
free approach DQN tends to overfit the training environ-
ments and cannot learn to plan in unseen environments,
leading to a much higher death rate and a much lower
score. In addition, we observe that MCTS in conjunc-
tion with MAOP acquires intriguing forward-looking skills,
such as jumping over the fires and jumping across the big
gap that are critical for survival and reaching the goal
(see the video https://github.com/maop2019/
maop2019/tree/master/MCTSVideo).

Table 4. The performance of using MCTS with different dynamics
models, and DQN in unseen environments. REAL indicates the
real simulator. Time Out indicates exceeding 100 steps. Reward
indicates the accumulative reward that is averaged over 21 runs.

Methods Reward Win Lose Time Out

MCTS + MAOP 38.19 47.62% 9.52% 42.86%
MCTS + REAL 38.41 52.38% 9.52% 38.10%

DQN 13.67 26.7% 23.8% 49.5%

4.3. Interpretable Representations and Knowledge

MAOP takes a step towards interpretable dynamics model
learning. Through interacting with environments, it learns
visually and semantically interpretable knowledge in a self-
supervised manner, which contributes to unlocking the
“black box” of the dynamics prediction and potentially opens
the avenue for further researches on object-oriented RL,
model-based RL, and hierarchical RL.

Visual Interpretability. To demonstrate the model inter-
pretability of MAOP in unseen environments, we visualize
the learned masks of dynamic and static objects. We high-
light the attentions of object masks by multiplying the raw
images by the binarized masks. Note that MAOP does not
require the actual number of objects but a maximum number
and some learned object masks may be redundant. Thus,
we only show the informative object masks. As shown in
Figure 5, our model captures all the key objects in the envi-
ronments including the controllable agents (cowboy, bird,
and chicken), the uncontrollable dynamic objects (monster,
fires, pipes and cars), and the static objects that have effects
on the motions of dynamic objects (ladders, walls and the
free space), which demonstrates that model can learn dis-
entangled object representations and distinguish the objects
by both appearance and dynamic property.

Dynamical Interpretability. To show the dynamical inter-
pretability behind image prediction, we test our predicted
motions by comparing RMSEs between the predicted and

Monster Kong

Flappy Bird

Freeway

Figure 5. Visualization of the masked images in unseen environ-
ments. Top left corner is the raw image.

ground-truth motions in unseen environments (Appendix
Table A2). Intriguingly, most predicted motions are quite
accurate, with the RMSEs less than 1 pixel. Such a visu-
ally indistinguishable error also verifies the accuracy of our
dynamics learning.

Discovery of the Controllable Agent. With the learned
knowledge in MAOP, we can easily uncover the action-
controlled agent from all the dynamic objects, which is use-
ful semantic information that can be used in heuristic algo-
rithms. Specifically, the object that has the maximal variance
of total effects over actions is the action-controlled agent.
Denote the total effects as Et

i = (
∑

j E
t(ci, j)) +Et

self(ci),
the label of the action-controlled agent is calculated as,
arg maxi

∑
t V arat(Et

i ). We observe that our discovery of
the controllable agent achieves right or near 100% accuracy
in unseen environments (see Appendix Table A3).

5. Conclusion and Discussion
This paper presents a self-supervised multi-level learning
framework for learning action-conditioned object-based dy-
namics. It enables sample-efficient and interpretable model
learning, and achieves zero-shot generalization over novel
environments with multiple dynamic objects and different
static object layouts. The learned dynamics model enables
an agent to directly plan in unseen environments. Our future
work includes extending our model for deformation pre-
diction (e.g., object appearing, disappearing and non-rigid
deformation) and incorporating a camera motion prediction
network module introduced by (Vijayanarasimhan et al.,
2017) for applications such as FPS games and autonomous
driving. Learning 3D dynamics from 2D video is extremely
challenging. Conventional neural networks try to learn such

https://github.com/maop2019/maop2019/tree/master/MCTSVideo
https://github.com/maop2019/maop2019/tree/master/MCTSVideo
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3D dynamics by remembering some patterns from 2D data
as they do for the non-rigid deformation, such as AC Model
(Oh et al., 2015) and CDNA (Finn et al., 2016). This ap-
proach achieves good performance in training environments,
but it requires a large number of data and does not really re-
cover the true 3D dynamics model. To learn generalized 3D
dynamics model, object-oriented learning paradigm in con-
junction with 3D CNN (3D data input) is necessary, which
is an important direction for future work.
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6. Appendix
6.1. Multi-Level Abstraction Framework

Algorithm A1 shows a pseudocode that summarizes the
overall architecture of our multi-level abstraction framework
(Section 3 in the main body).

6.2. Object-Oriented Dynamics Learning Paradigm

Algorithm A2 illustrates the learning paradigm of object
based dynamics and the interactions of its components (Sec-
tion 3.1 in the main body).

6.3. Instance Localization

Instance localization is a common technique in context of
supervised region-based object detection (Girshick et al.,
2014; Girshick, 2015; Ren et al., 2015; He et al., 2017;
Liu et al., 2018), which localizes objects on raw images
with regression between the predicted bounding box and the
ground truth. Here, we propose an unsupervised approach
to perform dynamic instance localization on dynamic ob-
ject masks learned by Object Detector. Our objective is to
sample a number of region proposals on the dynamic object
masks and then select the regions, each of which has exactly
one dynamic instance. In the rest of this section, we will
describe these two steps in detail.

Region proposal sampling. We design a learning-free sam-
pling algorithm for sampling region proposals on object
masks. This algorithm generates multi-scale region propos-
als with a full coverage over the input mask. Actually, we
adopt multi-fold full coverage to ensure that pixels of the
potential instances are covered at each scale. The detailed
algorithm is described in Algorithm A3.

Instance mask selection. Instance mask selection aims at
selecting the regions, each of which contains exactly one dy-
namic instance, based on the discrepancy loss Linstance (Sec-
tion 3.1 in the main body). To screen out high-consistency,
non-overlapping and non-empty instance masks at the same
time, we integrate Non-Maximum Suppression (NMS) and
Selective Search (SS) (Uijlings et al., 2013) in the context
of region-based object detection (Girshick et al., 2014; Gir-
shick, 2015; Ren et al., 2015; He et al., 2017; Liu et al.,
2018) into our algorithm.

6.4. Modular Test

We conduct a modular test to better understand the contri-
bution of each learning level. First, we investigate whether
the level of dynamics learning can learn the accurate dy-
namics model when the coarse region proposals of dynamic
instances are given. We remove the other two levels and
replace them by the artificially synthesized coarse proposals
of dynamic instances to test the independent performance

of the dynamics learning level. Specifically, the synthesized
data are generated by adding standard Gaussian or Poisson
noise on ground-true dynamic instance masks (Figure A5).
As expected, the level of dynamics learning can learn accu-
rate dynamics of all dynamic objects given coarse proposals
of dynamic instances (Table A1). Similarly, we test the
independent performance of the dynamics instance segmen-
tation level. We replace the foreground proposal generated
by the motion detection level with the artificially synthe-
sized noisy foreground proposal. Figure A6 demonstrates
our learned dynamic instances in the level of dynamic in-
stance segmentation, which demonstrates the competence
of the dynamic instance segmentation level. Taken together,
the modular test shows that each level of MAOP can inde-
pendently perform well and has a good robustness to the
proposals generated by the more abstracted level.

6.5. Supplementary Tables and Figures

In addition to the above mentioned tables and figures, here
we supplement the rest of supplementary tables and figures,
that is, Table A2 (mentioned in Section 4.3 of the main
body), Table A3 (mentioned in Section 4.3 of the main
body), Figure A3 (mentioned in Section 4.1 of the main
body), Figure A7 (mentioned in Section 4.2 of the main
body), and Figure A4 (mentioned in Table 2 of the main
body).

6.6. Implementation Details for Experiments

The neural network architecture of the dynamic instance seg-
mentation level (consisting of Instance Splitter and Merging
Net) is shown as Figure A1. Object Detector in the dynam-
ics learning level has the similar architecture with Instance
Splitter. The CNNs in Object Detector are shown as Figure
A2.

ℒinstance+ℒforground

pixel-wise 

softmax

𝐹

Video frames

Dynamic Object 

Masks
Dynamic Object 

Mask Candidates

pixel-wise 

softmax

𝐹CNNs

ℒinstance +ℒmerge

Figure A1. Architecture of the dynamic instance segmentation
level, which consists of Instance Splitter and Merging Net.

Denote Conv(F,K, S) as the convolutional layer with
the number of filters F , kernel size K and stride S. Let
R(), S() and BN() denote the ReLU layer, sigmoid
layer and batch normalization layer (Ioffe & Szegedy,
2015). The CNNs in Merging Net are connected in the
order: R(BN(Conv(32, 1, 1))), R(BN(Conv(1, 1, 1))).
The 6 convolutional layers (Figure A2) in Object De-
tector can be indicated as R(BN(Conv(32, 3, 1))),
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Figure A2. Architecture of the CNNs in Object Detector.

R(BN(Conv(32, 3, 1))), R(BN(Conv(16, 3, 2))),
R(BN(Conv(16, 3, 2))), R(BN(Conv(32, 1, 1))) and
BN(Conv(1, 3, 1)), respectively. The CNNs in Relation
Net are connected in the order: R(BN(Conv(16, 3, 2))),
R(BN(Conv(16, 3, 2))), R(BN(Conv(16, 3, 2))), and
R(BN(Conv(16, 3, 2))). The last convolutional layer is
reshaped and fully connected by the 64-dimensional hidden
layer and the 2-dimensional output layer successively.
Inertia Net has the same architecture and hyperparameters
as Relation Net.

The detailed experimental settings and hyperparameters for
training MAOP on Monster Kong, Flappy Bird and Freeway
are listed as follows:

• We use random exploration on Monster Kong. We
adopt an expert guided random exploration on Flappy
Bird and Freeway, because a totally random explo-
ration will lead to an early death of the agent even at
the very beginning. Although we use these exploration
methods in our experiments, our framework can sup-
port smarter exploration strategies, such as curiosity-
driven exploration (Pathak et al., 2017).

• The weights of losses, λ1, λ2, λ3, λ4 are 100, 1, 10,
and 10, respectively. And in these three games, we
consider that static mask is a dynamic object whose
motion is 0 and the weight of Linstance for this 0-motion
dynamic object mask is 100. In addition, all the l2
losses are divided by HW to keep invariance to the
image size.

• The decay rate α in background memory is 0.9.

• Batch size is 8 and the maximum number of training
steps of Dynamics Learning and Instance Segmentation
are set to 5× 104 and 1× 105, respectively.

• The optimizer is Adam (Kingma & Ba, 2014) with
learning rate 1× 10−3.

• The raw images of Monster Kong, Flappy Bird and
Freeway are resized to 160× 160× 3, 160× 80× 3,
and 160× 120× 3 , respectively.

• The size of the horizon window w is 33 on Monster
Kong, 41 on Flappy Bird, and 33 on Freeway.

• The maximum number of static masks is 8 on Monster
Kong, 3 on Flappy Bird and 6 on Freeway.

• The maximum number of dynamic object masks (the
output masks of Object Detector and Merging Net) is
5 on Monster Kong, 6 on Flappy Bird and 12 on Free-
way. To encourage Instance Splitter to generate more
dynamic object mask candidates, we set the maximum
number of dynamic object masks outputted by Instance
Splitter to be 8 on Monster Kong, 15 on Flappy Bird
and 20 on Freeway.

• The maximum instance number of each dynamic object
class is set to 6 on Monster Kong, 15 on Flappy Bird
and 6 on Freeway.

• The size of mutli-sacle region proposals are 10 ×
10, 20× 20, 40× 40, 80× 80, respectively.

• To augment the interactions of instances when training
Instance Splitter, we random sample two region pro-
posals and combine them into a single region proposal
with double size.

The detailed hyperparameters for running MCTS with
MAOP, OODP, CDNA, AC Model, and real simulator on
Monster Kong are listed as follows:

• The number of trajectories is 500.

• The maximum-depth of each trajectory is 6.

• The exploration parameter used in Upper Confidence
Bounds for Trees (UCT) is 5.

• The number of rollouts in each simulation is 8.

• At the end of each search, the agent selects the action
with maximum visit count.
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Algorithm A1 Overall Multi-Level Abstraction Framework.

1: Initialization. Initialize the parameters of all neural networks with random weights respectively.
2: Motion Detection Level. Perform foreground detection to produce dynamic region proposals, which potentially have

moving objects.
3: Instance Segmentation Level. Train the dynamic instance segmentation network (including Instance Splitter and

Merging Net) by minimizing LDIS, which includes a proposal loss to focus the dynamic instance segmentation on the
dynamic region proposals from Step 2.

4: Dynamic learning Level. Train the dynamics learning network (whose forward process is shown as Algorithm A2) by
minimizing LDL, which includes a proposal loss to utilize the dynamic instance proposals generated by the trained
dynamic instance segmentation network in Step 3 to facilitate the learning of Object Detector.

Algorithm A2 Object-Oriented Dynamics Learning.

Input: A sequence of video frames It−h:t with length h, input action at at time t.
1: Object masks Ot−h:t ← ObjectDetector(It−h:t), O include dynamic and static masks D,S
2: Instance masks Xt−h:t ← InstanceLocalization(It−h:t,Dt−h:t)

3: Predicted instance masks X̂
t+1
← ∅

4: for each instance mask x in X do
5: Effects from spatial relations mt

1 ← RelationNet(xt,Ot,at)
6: Effects from temporal relations mt

2 ← InertiaNet(xt−h:t,at)
7: Total effects mt ←mt

1 + mt
2

8: Predicted instance mask x̂t+1 ← Transformation(xt,mt)

9: X̂
t+1
← X̂

t+1⋃
x̂t+1

10: end for
11: Background image Bt+1 ← BackgroundConstructor(It,St)

12: Predicted next frame Î
t+1
← Merge(X̂

t+1
,Bt+1)

Algorithm A3 Region Proposal Sampling.
Input: Dynamic object mask D ∈ [0, 1]H×W , the number of region proposal scales nS , the folds of full coverage T .
1: Initialize proposal set P = ∅.
2: Binarize D to get the indicator for the existence of objects
3: for l = 1 . . . nS do
4: Select scale dx, dy depend on the level l.
5: for t = 1 . . . T do
6: Initialize candidate set C = {(i, j)|Di,j = 1}.
7: while C 6= ∅ do
8: Sample a pixel coordinate (x, y) from C.
9: Get a box B = {(i, j)| |i− x| ≤ dx, |j − y| ≤ dy}.

10: if B is not empty then
11: Insert B into the proposal set P← P ∪ {B}.
12: end if
13: Update the remain candidate set C← C \ B.
14: end while
15: end for
16: end for
Return: P
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Table A1. Prediction performance of the dynamic instance level with different region proposals of dynamic instances on 3-to-5 generaliza-
tion problem of Monster Kong. ”All” represents all dynamic objects. ”Computed by DIS” refers to using the proposal regions of dynamic
instances computed from the level of dynamic instance segmentation in MAOP.

Noise type of proposals
Training environments Unseen environments

0-acc 1-acc 2-acc 0-acc 1-acc 2-acc

Agent All Agent All Agent All Agent All Agent All Agent All

Computed by DIS 0.99 0.95 1.00 0.97 1.00 0.97 0.99 0.94 1.00 0.96 1.00 0.97
Gaussian Noise 0.63 0.57 0.94 0.89 0.99 0.95 0.60 0.57 0.93 0.89 0.98 0.95
Poisson Noise 0.93 0.91 0.98 0.95 0.99 0.96 0.93 0.91 0.99 0.96 0.99 0.96

Table A2. Average motion prediction error in two experiment environments. †, ‡ and § indicate training with only 100, 300 and 3000
samples. ALL represents all dynamic objects.

Model Monster Kong Flappy Bird

1-5§ 1-5 2-5 3-5 1-5† 1-5‡

MAOP 0.34 0.15 0.14 0.12 0.30 0.34

Table A3. Accuracy of our discovery of controllable agent in unseen environments.

Model MonsterKong FlappyBird Freeway

MAOP 100% 100% 98.75%
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Figure A3. The performance of object dynamics prediction in unseen environments as training progresses on 3-to-5 generalization problem
of Monster Kong. “Agent” represents the dynamics of the agent, while “all” represents the dynamics of all dynamic objects. Since we use
the first 20k samples to train the level of dynamic instance segmentation, the curve of MAOP starts at iteration 20001.
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Current frame Ground-true next frame Predicted next frame

Figure A4. Image predictions in testing environments on Freeway. Since just the agent’s ground-true location is accessible in Arcade
Learning Environment, we can only examine the predictions of other dynamic objects by comparing the predicted with ground-true
images. These two samples are not cherry-picked. From the figure, we can observe that the errors between the predicted and ground-true
images are visually indistinguishable, which suggests that our prediction of all dynamic objects are accurate.
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Image

Gaussian 
noise

Noisy proposals of dynamic instances

Poisson 
noise

Figure A5. Noisy region proposals of dynamic instances. Zoom in to see the details.

Image Noisy proposal Learned dynamic instance masks

Figure A6. The learned dynamic instance masks in the level of dynamic instance segmentation with noisy foreground proposals.
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Time step:   0                1                        2                      3                          4                   5                        6

Prediction

Ground Truth

Action: up left                     up                    no op                  left                   down

Figure A7. A case shows the 6-step prediction of our model in unseen environments on 3-to-5 generalization problem of Monster Kong.


