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We experimentally demonstrate a parametric iSWAP gate in a superconducting circuit based on a tunable
coupler for achieving a continuous tunability to eliminate unwanted qubit interactions. We implement the
two-qubit iSWAP gate by applying a fast-flux bias modulation pulse on the coupler to turn on parametric exchange
interaction between computational qubits. The controllable interaction can provide an extra degree of freedom to
verify the optimal condition for constructing the parametric gate. Aiming to fully investigate error sources of the
two-qubit gates, we perform quantum process tomography measurements and numerical simulations as varying
static ZZ coupling strength. We quantitatively calculate the dynamic ZZ coupling parasitizing in two-qubit gate
operation, and extract the particular gate error from the decoherence, dynamic ZZ coupling, and high-order
oscillation terms. Our results reveal that the main gate error comes from the decoherence, while the increase
in the dynamic ZZ coupling and high-order oscillation error degrades the parametric gate performance. This
approach, which has not yet been previously explored, provides a guiding principle to improve gate fidelity
of a parametric iSWAP gate by suppression of the unwanted qubit interactions. This controllable interaction,
together with the parametric modulation technique, is desirable for crosstalk-free multiqubit quantum circuits
and quantum simulation applications.
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I. INTRODUCTION

Building large superconducting circuits requires highly
coherent and strongly interacting physical qubits to achieve
high-fidelity gates. As the circuits become more complex,
however, the fidelity of quantum algorithms will begin to be
dominated by unwanted qubit interactions, increased deco-
herence, and frequency crowding, all inherent to traditional
frequency-tuned architectures [1]. Spurious unwanted qubit
interactions can degrade gate performance. It thus becomes
increasingly crucial to develop robust protocols for multiqubit
control [2–4]. Much effort has been devoted to eliminating
the unwanted coupling and achieving controllable interactions
[5,6]. A parametric scheme based on tunable couplers can help
mitigate the problem of unwanted coupling and frequency
crowding [3,7,8]. In this scheme, the effective interaction
between two qubits is mediated via a frequency-tunable bus,
which dispersively couples to both computational qubits. To
turn on the interaction between two qubits, the tunable bus is
modulated by an external magnetic flux, at the qubit frequency
detuning, which causes a parametric oscillating of the qubit-
qubit exchange coupling and activates a resonant XX + YY
interaction [7,9,10]. Such a flux-modulation scheme with
microwave-only control provides frequency selectivity and
allows to use fixed-frequency computational qubits, thereby
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minimizing the sensitivity of the qubits with respect to the
sources of possible noise.

The microwave-only control gates have been proposed and
realized for fixed-frequency qubits by applying one or more
microwave drives [11,12]. In particular, a leading two-qubit
gate for fixed-frequency qubits, the cross-resonance (CR) gate
[6,13], has demonstrated fidelities greater than 99% [6]. The
coupling, however, is only effective when the qubit-qubit
detuning is closely spaced compared to the anharmonicity
of the qubits. Unlike drive-activated gates, the parametric
exchange interaction does not decrease as the frequency de-
tuning of qubits is larger than the anharmonicity. Therefore,
it is promising for implementing entangling gates in larger
circuits where a range of qubit frequencies is needed to
avoid crosstalk. Although two-qubit interactions with para-
metric modulation have been experimentally implemented
[7,9,10], some unwanted interactions, in particular, parasitic
ZZ coupling and high-order oscillation terms, are omitted in
the previous studies. Those unwanted interactions are always
present during the two-qubit gate and, thus, degrade the
gate performance. The suppression of static ZZ crosstalk has
been investigated in a superconducting circuit of two qubits
with a tunable two-coupler system, where the frequency of a
coupler can be adjusted such that the ZZ interaction from each
coupler destructively interferes [5]. The crosstalk elimination
for a single-qubit gate has been verified via the simultaneous
randomized benchmarking.

In this paper, we address these crucial barriers to improving
the gate fidelity by eliminating the unwanted qubit inter-
actions. We experimentally demonstrate a parametric iSWAP
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gate in a superconducting circuit based on a tunable coupler
for utilizing a unique competition between a positive direct
and negative indirect coupling to achieve a continuous tun-
ability [14]. It allows a direct control of qubit interactions,
with large “on” coupling consistent with small to zero “off”
coupling, without introducing nonidealities that limit the gate
performance [15–17]. It thus can be used to more efficiently
implement surface codes that require iSWAP gates [18,19]. We
employ the parametric modulation on the coupler to turn on
the interaction of qubits, and aim to fully investigate the effect
of the unwanted high-order oscillation terms and parasitic
ZZ coupling on the two-qubit gates, which has not yet been
previously explored. This controllable interaction, together
with the parametric modulation technique, paves a way for
crosstalk-free multiqubit quantum circuits, and is desirable for
scalability architectures and quantum simulation applications
[2,20–23].

II. RESULTS

A. Theory

Our device consists of two transmon qubits (Q1, Q2)
coupled via a frequency-tunable transmon bus (coupler).
A schematic circuit is illustrated in Fig. 1(a). The device
parameters are similar to that presented in Ref. [14] (see
Appendixes C and D for the measurement setup and de-
vice parameters). The two qubits (Q1, Q2) each couple to
the coupler (C) with a coupling strength gi (i = 1, 2), as
well as to each other through a cross-shaped capacitor with
a direct coupling strength g12, as depicted in Fig. 1(b).
Therefore, the two qubits interact through two channels,
the direct capacitive coupling and the indirect virtual ex-
change coupling via the coupler. Both qubits (ωi=1,2/2π =
4.9607 and 4.9265 GHz at each sweet spot) are nega-
tively detuned from the coupler (ωc/2π = 5.976 GHz at
the sweet spot), �i(φ) = ωi − ωc < 0, where ωi (i = 1, 2)
and ωc are the frequencies of qubits Q1, Q2 and the
coupler, respectively. The experimentally extracted parame-
ters, gi=1,2/2π = 86.6 and 90.6 MHz, g12/2π ∼ 6.74 MHz,
indicate a dispersive coupling, gi � |�1,2(φ)|. The system
Hamiltonian can be written as [24–26]

H/h̄ =
∑
i=1,2

1

2
ω̃iσ

z
i + J12(σ+

1 σ−
2 + σ+

2 σ−
1 ), (1)

where ω̃i = ωi + g2
i

�i (φ) is the Lamb-shifted qubit frequency,

J12 = g12 + g1g2

�(φ) , and �(φ) = 2/( 1
�1(φ) + 1

�2(φ) ). The com-
bination of two terms, g12 + g1g2

�(φ) , gives the total effective
qubit-qubit coupling J12, which can be adjusted by the coupler
frequency through �(φ). Since the tunability is continuous,
one can always find a critical value ωc,off to turn off the effec-
tive coupling [J12(ωc,off ) = 0] [27], as well as the static ZZ
coupling ξZZ,S when two qubits are detuned in the dispersive
regime [14].

To realize the parametric two-qubit gate, we apply a
modulation flux on the coupler, φ(t ) = φdc + � cos(ωφt +
ϕ), where φdc is the dc flux bias, and � cos(ωφt + ϕ) is a
sinusoidal fast-flux bias modulation with an amplitude �,
frequency ωφ , and phase ϕ. Since the coupler frequency has a
nonlinear dependency on the modulation flux [28], a second-

order dc shift of the coupler frequency results in an oscillating
term at 2ωφ when expanding J12 in the parameter � cos(ωφt )
to the second order (ignoring higher-order terms) [7]. By
substituting J12 in Eq. (1) with the expansion, we obtain
the Hamiltonian in a rotating frame at the qubit frequencies
(including the drive-induced shift):

H/h̄ =
[(
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where �12,� = �12 + �2

4 ( ∂2ω̃2
∂φ2 − ∂2ω̃1

∂φ2 ), �12 = ω̃1 − ω̃2. In
our experiment, we apply a sinusoidal fast-flux bias mod-
ulation pulse at the frequency ωφ = �12,� on the tunable
coupler to realize the parametric iSWAP gate between the
computational qubits [7]. By replacing �12,� with ωφ and
using Euler’s formula we get
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The first term, Heff/h̄ = Jeff (σ x
1 σ x

2 + σ
y
1 σ

y
2 ) (Jeff = �

2
∂J12
∂φ

),
represents the resonant exchange interaction between Q1 and
Q2. This effective parametric modulation brings the compu-
tational qubits into resonance and can be used to implement
the two-qubit gates. The others are unwanted high-order os-
cillation terms generated from the high-order expansion of
J12. By using our device parameters, we numerically calculate
the high-order oscillation error terms J12, ∂J12

∂φ
, and ∂2J12

∂φ2 as a
function of the coupler flux bias, as shown in Fig. 1(d). The
coefficients of the oscillation terms are listed in Table I for the
four coupler flux biases used for implementing the parametric
gate.

The coupling between higher energy levels of qubits gives
rise to a cross-Kerr term ξZZ,Sσ

+
1 σ−

1 σ+
2 σ−

2 , resulting in a static
ZZ interaction [5,29–32]. Here, we define ξZZ,S = h̄(ω11 −
ω01 − ω10) as the static ZZ coupling strength with respect
to performance of single-qubit gates, to distinguish it from
the dynamic ZZ coupling parasitizing in two-qubit iSWAP

gate operations. In contrast to the static ZZ interaction, the
dynamic ZZ coupling involves time-dependent modulated
components superposed on the static one in terms of the
parametric drive on the coupler. Previous studies have shown
that the static ZZ interaction causes dephasing in qubits and
degrades gate performance [5,33]. We measure the static ZZ
interaction by a Ramsey-type measurement, which involves
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FIG. 1. (a) Schematic circuit of the coupler system. A parametric
gate can be realized by applying a fast-flux bias φ(t ) to the coupler
SQUID loop. (b) Sketch of the coupler system. Two qubits are
coupled directly by a coupling strength g12 and couple to the coupler
with coupling strengths g1 and g2, respectively. (c) Simulation curves
of ∂J12

∂φ
vs coupler flux bias (coupler frequency). We show four

different qubit frequency detunings, as an example, to indicate the
dependency of ∂J12

∂φ
on the coupler flux bias [blue (first), yellow

(second), red (third) and green (fourth) curves]. The blue (first) curve
corresponds to the qubit frequency detuning of 34.2 MHz at which
we acquire data in our experiment. The black, purple, orange, and
red stars superposed on the blue (first) curve represent the operating
points we choose. The right panel shows the change of the static
ZZ coupling strength with varying the coupler flux bias (coupler
frequency). (d) Calculated data for J12, ∂J12

∂φ
, ∂2J12

∂φ2 vs coupler flux
bias. The calculation corresponds to the qubit frequency detuning
of 34.2 MHz and uses the device and coupling parameters given in
Tables II and III.

probing the frequency shift of Q1 with initializing Q2 in either
its ground or excited state [30,31]. The measurement result
indicates that the static ZZ coupling strength ξZZ,S depends on
the coupler frequency, as shown by a purple curve (dots) in
Fig. 1(c). At a critical coupler frequency ωc,off = 5.905 GHz,
the measured static ZZ coupling strength is ξZZ,S ∼ 1 kHz,
close to the resolution limit for the frequency detection. We

TABLE I. Coefficients of oscillation terms, calculated by the
expansion of J12 to second order. All data are divided by 2π in units
of MHz.

Coupler flux bias J12
�2

4
∂2J12
∂φ2

�2

8
∂2J12
∂φ2

�

2
∂J12
∂φ

−6.31 mV ≈0 0.610 0.305 0.645
−103.76 mV −4.678 0.230 0.115 0.982
−106.81 mV −5.076 0.221 0.110 0.988
−109.86 mV −5.513 0.209 0.105 0.989

utilize simultaneous randomized benchmarking (RB) to verify
the isolation of two qubits. At near-zero static ZZ coupling,
we get individual RB gate fidelities of 99.44% and 99.41%
for Q1 and Q2, respectively, which are nearly the same as
the simultaneous RB gate fidelities of 99.45% and 99.40%
obtained for Q1 and Q2. When the static ZZ coupling strength
increases to ξZZ,S = −0.45 MHz, however, we observe that
the individual RB fidelity is almost not affected, whereas the
simultaneous RB gate fidelity rapidly decreases about 0.54%
for Q1 and 0.93% for Q2. This result reveals that the static
ZZ interaction becomes a dominant error source of the single-
qubit gate operation [14].

B. Experimental realization of parametric iSWAP gate

We implement a two-qubit parametric iSWAP gate by using
the pulse sequence illustrated in Fig. 2(a). We initialize the
two qubits in the |00〉 state with a detuning of 34.2 MHz
(ω1,2/2π = 4.9607 and 4.9265 GHz at the sweet spot of each
qubit), and set the coupler dc flux bias φdc ≈ −6.41 mV
with respect to the coupler frequency of 5.905 GHz, at the

FIG. 2. (a) Pulse sequence for realizing the parametric iSWAP

gate. (b) The exchange oscillation between two-qubit states |10〉
and |01〉 as a function of the gate length and drive frequency ωφ

(with respect to the detuning between the two qubits when � = 0,
�12,�=0 = 34.2 MHz). (c) The simultaneous quantum-state popula-
tion for both qubits, indicating that the excitation oscillates between
the two qubits. The iSWAP and

√
iSWAP gate can be implemented at

the specific evolution times t ∼ 204 ns and t ∼ 102 ns, respectively.
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zero static ZZ coupling strength. A π pulse is then applied
on Q1. To turn on the exchange interaction between the
computational qubits, a fast-flux bias modulation pulse is then
applied on the coupler. Afterwards, the modulation pulse is
held for a certain time to perform the iSWAP gate. The effective
coupling strength, Jeff = �

2
∂J12
∂φ

, depends on the derivative of

J12 with respect to φ. The theoretical calculations of ∂J12
∂φ

ver-
sus dc flux on the coupler are illustrated as blue (first), yellow
(second), red (third), and green (fourth) curves in Fig. 1(c)
at four qubit frequency detunings of 34.2, 121.9, 233.1, and
390.6 MHz, respectively. The effective coupling can thus be
tuned from zero to a few megahertz for a moderate modulation
amplitude �. By applying the fast-flux bias modulation pulse
of � cos(ωφt + ϕ) on the coupler, we measure the simulta-
neous quantum-state population of both qubits, as shown in
Fig. 2(c), indicating the excitation oscillating between the two
qubits. Specific locations in Fig. 2(c), Jefft = n π

2 , represent
a primitive two-qubit gate, the iSWAP gate, which can be
used to construct a universal gate set for quantum computing.
We implement the iSWAP gate at a specific evolution time,
indicated by a dark arrow in the figure, where t ∼ 204 ns. At
the evolution time marked by a red arrow, where t ∼ 102 ns,
the excitation is equally shared between both qubits, and
a maximally entangled Bell state 1√

2
(|01〉 + i|10〉) can be

generated. Figure 2(b) shows a chevron pattern on the Q1 pop-
ulation, as a function of the coupler flux pulse length and the
parametric modulation frequency ωφ with respect to the de-
tuning between the qubits when � = 0, �12,�=0 = 34.2 MHz.
The parametric flux modulation induces a dc shift of the
tunable coupler, and thus the resonance frequency of the
exchange oscillating is shifted down from �12,�=0 by approx-
imately 0.25 MHz. One can expect a faster two-qubit gate by
increasing the modulation strength or setting the dc flux bias
to yield a lower coupler frequency but a larger value of ∂J12

∂φ
.

However, this will result in an increase of the leakage error
and static ZZ coupling.

We perform quantum process tomography (QPT) by im-
plementing 16 independent two-qubit input states and con-
struct the matrix for iSWAP, as shown in the upper inset of
Fig. 3(b). The gate fidelity can be determined from the χ

matrix through the expression F = tr(χexptχideal ), where χexpt

and χideal are the experimental and ideal matrices. QPT gives
full information about the gate process, while it is susceptible
to state preparation and measurement (SPAM) errors [34,35].
To further measure the intrinsic gate error, we concatenate
a series of gates and determine the fidelity decay as the
number of gates (N) increases, using the pulse sequence
indicated in Fig. 3(a). The QPT fidelity, shown as red dots in
Fig. 3(b) with error bars, decays with concatenating the iSWAP

gates. The representative χ matrices (χexpt and χideal) of QPT
measurements at N = 1 and N = 21 are shown in the upper
and lower insets of Fig. 3(b), respectively. By fitting the data
(black curve) under the assumption of independent error for
each gate [36,37], we obtain an average gate fidelity of 94.0%.

III. DISCUSSIONS AND ERROR ANALYSES

To characterize error sources for the parametric iSWAP

gate, we perform quantum process tomography measurements

FIG. 3. (a) Pulse sequence for measuring an intrinsic average
gate fidelity. (b) QPT fidelity decays with increasing iSWAP gate
number. To eliminate the measurement uncertainty, QPT is repeated
five times for the measurements at each point. We fit the raw data
(red dots with error bars) with a black curve based on F = APN + 1

16
under the assumption of independent error for each gate [36,37].
Here, P is the intrinsic average gate fidelity and N is the gate
number. The fitting result gives A = 0.951 and P = 0.940. The upper
and lower insets represent the χ matrices extracted from the QPT
measurements at N = 1 and N = 21, respectively.

while varying the dc flux bias on the coupler (static ZZ
coupling strength). Here, we take a practical way to minimize
the SPAM-error effect on the QPT results. Since the SPAM
error mainly results from the state preparation process in our
experiment, we measure the SPAM error by conducting the
process tomography with and without the two-qubit gate, and
then subtract the SPAM error from the χ matrix to obtain a
pure χ matrix of the gate (see more details in Appendix B).
We measure the QPT by setting the coupler at four different
dc flux biases, as indicated by the black, purple, orange, and
red stars superposed on the blue (first) simulation curve of
∂J12
∂φ

in Fig. 1(c), with respect to the static ZZ coupling at 0,
−0.23, −0.28, and −0.34 MHz, respectively. To eliminate the
measurement uncertainty, the QPT measurement is repeated
five times at each operating point. We extract the SPAM-error
free gate fidelity by constructing QPT measurements, at each
operating point, with (experimental QPT fidelity) and without
(control QPT fidelity) the parametric modulation drive on
the coupler. The corresponding pulse sequence used for the
measurements is illustrated in Fig. 4(a). The representative
experimental matrices χexpt and ideal matrices χideal are shown
as shaded bars in Fig. 3(b) (upper inset) and Fig. 4(b), yielding
an extracted SPAM-error free gate fidelity of 93.2%, 92.2%,
91.7%, and 91.1% for the QPT data acquired at the static ZZ
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FIG. 4. (a) Pulse sequence for obtaining the pure χ matrix from
the experimental QPT and control QPT measurements. The SPAM-
error free gate fidelity can be extracted between the cases with and
without the parametric modulation drive on the coupler. (b) Experi-
mental χ matrices of the QPT measurements at the operating points
with respect to the static ZZ coupling strengths of −0.23, −0.28,
and −0.34 MHz. (c) Simulation and extracted SPAM-error free
gate fidelity vs static ZZ coupling strength (coupler flux bias). The
black line (squares; SFD3) represents the simulation fidelity with
consideration of the qubit decoherence based on the Hamiltonian
including the anharmonicity term. The blue line (stars; SFD2) shows
the simulation fidelity in consideration of qubit decoherence based
on the Hamiltonian with the Hilbert space restricted to the lowest
two states. The red line (dots; EF ) illustrates the SPAM-error free
gate fidelity. (d) Experimental gate infidelity extracted from χ err vs
static ZZ coupling strength (coupler flux bias). The red line (dots)
represents the dynamic ZZ coupling error as varying the coupler
flux, while the blue line (diamonds) shows the decoherence error.
The dashed black line (squares) corresponds to the calculated gate
infidelity induced by the energy relaxation and pure dephasing. The
grey bars show the dynamic ZZ coupling (right panel) as varying the
coupler flux (static ZZ coupling).

coupling of 0, −0.23, −0.28, and −0.34 MHz, respectively.
We plot the extracted gate fidelity by varying the static ZZ
coupling in Fig. 4(c) (red dot line marked as EF ). Apparently,
the corresponding gate fidelity decreases with increasing static
ZZ coupling from zero to −0.34 MHz. For comparison’s sake,

we set a same gate time of 204 ns to ensure an identical
decoherence gate error at all four operating points by adjusting
the flux modulation amplitude to compensate for the change
in ∂J12

∂φ
. We carefully choose experimental parameters to rule

out potential error sources that may induce variation of the
gate fidelity as changing the dc flux bias. For instance, when
the coupler frequency is reduced to be close to the compu-
tational qubit frequency, the virtual excitation of the coupler
will become real excitation, exchanging energy between the
qubit and coupler. To avoid this, we select the four dc flux
biases all in the nonleakage regime (see Fig. 8). In addition,
the change in the parametric modulation amplitude may be
attributed to the gate fidelity variation, since the large signal
amplitude could lead to leakage out of the computational basis
into the higher transmon levels or into the coupler. This is,
however, contrary to our case. We use the moderate drive
amplitude of modulation pulses, 0.115�0, 0.021�0, 0.019�0,
and 0.017�0 (�0 is the flux quantum), at the four dc flux
biases of the coupler. As a result, the change in the parametric
gate fidelity may be attributed to some unexcluded errors, such
as the unwanted high-order oscillation terms and dynamic ZZ
coupling parasitizing in the two-qubit gate operation.

A. Numerical simulations

To verify the hypothesis above, we perform numerical sim-
ulations using the generalized Hamiltonian in Eq. (1), restrict-
ing the Hilbert space to the lowest two states of each transmon
[24,25]. We plot the simulation result in consideration of
the qubit decoherence [blue line (stars) marked as SFD2] in
Fig. 4(c) as a function of the static ZZ coupling strength.
The calculated value is slightly higher than the corresponding
experimental fidelity at the zero static ZZ coupling, while the
full data set demonstrates a reduction trend as the static ZZ
coupling increases. At the other three operating points, the
rapid decline of the simulation values below the experimental
fidelities reflects that the model of a two-level system is too
simplistic and more levels need to be included for a quan-
titatively accurate description. Consequently, we carry out a
more realistic simulation based on a Hamiltonian including
an anharmonicity term for each qubit (see Appendix E for
details). The calculated gate fidelity with considering the
qubit decoherence is plotted in Fig. 4(c) as a black line
(squares; SFD3). The simulation fidelity (SFD3), setting an
upper bound of the two-qubit gate fidelity, again decreases
as the static ZZ coupling arises, which is in agreement with
our experimental observation (EF ). In the following, by using
the error matrix method developed by Korotkovin [35], we
quantitatively calculate the dynamic ZZ coupling strength
and extract the particular gate error from the decoherence,
dynamic ZZ coupling, and high-order oscillation terms. The
result reveals that the main gate error comes from the de-
coherence, while the increase of the dynamic ZZ coupling
and high-order oscillation error degrades the parametric gate
performance.

B. Dynamic ZZ coupling error

To quantitatively verify the two-qubit gate error sources,
we characterize the experimental quantum gate via an error
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matrix χ err by separating χ err and a desired unitary operation
U from the standard process matrix χ [35]. The standard
QPT represented via χ matrix is usually defined as ρ f in =∑

m,n χmnEmρinE†
n , where ρin and ρ f in represent the initial

and final states; the matrices {En} form a basis and here we
use {En} = {I, X,Y, Z} ⊗ {I, X,Y, Z} [38]. By factoring out
the desired unitary operation U = UiSWAP in the χ matrix, we
can obtain the χ err matrix which defines the imperfections
of the experimental gate. After eliminating the SPAM error
experimentally, we extract the error matrix from the χ matrix
represented in the Pauli basis via the relation

ρ f in =
∑
m,n

χ err
mnUEmρinE†

nU †. (4)

In an ideal case the error matrix is equal to the perfect
identity operation χ I ; otherwise, χ err

II,II , the only large element,
reflects the gate fidelity F = tr(χexptχideal ) = tr(χ Iχ err ), and
any other nonzero elements in χ err indicate the imperfections
of the gate operation. The imaginary parts of the elements
along the left column and top row correspond to unitary
imperfections, while the real parts of the elements come from
decoherence error. Through the χ err matrix obtained from the
parametric iSWAP gate at the four operating points, we observe
one large imaginary element χ err

II,ZZ (χ err
ZZ,II ) which corresponds

to the ZZ unitary error during the gate operation. To deter-
mine this dynamic ZZ coupling error in the Hamiltonian, we
first extract the systematic unitary gate error matrix U err =
U actualU † due to a slightly imperfect unitary gate operation
(U actual ) according to the imaginary elements along the top
row and the left column of χ err. We then acquire an error
Hamiltonian H err by the expression U err = eiH errt to finally
calculate the dynamic ZZ coupling term (see more details in
Appendix B). The extracted dynamic ZZ coupling strength is
shown as grey bars in Fig. 4(d) positioned at the four operating
points marked by two measures, the static ZZ and coupler flux
dc bias. The average dynamic ZZ coupling strength increases
accordingly, being −23.5, −88.0, −96.4, and −111.0 kHz
at the four operating points, respectively. We further assess
the infidelity induced by the dynamic ZZ coupling with
�FZZ,D = (Imχ err

n0 )2/F , where Imχ err
n0 (or Imχ err

0n ) is the imag-
inary element along the top row (or left column) (n �= 0);
F is the process fidelity. This average infidelity, valued at
0.08%, 1.13%, 1.35%, and 1.78%, increases as the dynamic
ZZ coupling grows, which, to some extent, accounts for the
decline of the fidelity at the four operating points shown in
Fig. 4(c) (EF ).

C. Decoherence error

By separating the error matrix into the coherent part and
decoherence part as χ err = χdec + χ coh and diagonalizing the
χ err matrix, we can easily extract the value of decoherence
error (see more details in Appendix B). In fact, apart from the
dynamic ZZ coupling error, the decoherence error constitutes
the main error source in the gate operation. The decoherence
error at the four operating points is depicted as a blue line
(diamonds) in Fig. 4(d), demonstrating a near-constant value
of about 5.9%, which is consistent with the experimental
setting of the same gate time for all four operating points.
In our experiment, most of the small elements in the error

matrix reflect different decoherence mechanisms. The major
decoherence channel is the energy relaxation and pure de-
phasing of the qubits. Quantifying the decoherence process,
we can simply assess the contribution to the gate infidelity
due to the energy relaxation and pure dephasing mechanism,
by �FT1,φ

= tgate( 1
2T

Q1
1

+ 1
2T

Q2
1

+ 1
2T

Q1
φ

+ 1
2T

Q2
φ

), where T Qi
1 and

T Qi
φ (i = 1, 2) are the energy relaxation time and the pure

dephasing time for Q1 and Q2, respectively; tgate = 204 ns is
the gate time. Accordingly, we obtain an average induced gate
infidelity of 5.4%, as depicted as a dashed black line (squares)
in Fig. 4(d). The small difference between the data of the
dashed black line (squares) and the extracted decoherence
error is due to other excluded decoherence channels, together
with the interference between the decoherence error and the
coherent imperfection, in particular, the coherent error from
the high-order oscillation terms as discussed below.

D. High-order oscillation error

In addition to the effective parametric iSWAP term
Jeff (σ x

1 σ x
2 + σ

y
1 σ

y
2 ), the system Hamiltonian also involves

some unwanted high-order oscillation terms at frequencies of
ωφ , 2ωφ , and higher, as shown in Eq. (3). Though the essential
oscillation terms have different error accumulations from the
trivial ones, the overall error varies and thus degrades the
gate fidelity with increasing static ZZ interaction strength (see
Table I and Appendix B for details). The high-order oscillation
error, to the first-order approximation, mainly reflects in the
imaginary parts of the XX , YY , IZ , and ZI elements in
the left column and top row of the χ err matrix, which are
small in our experiment. To the second-order correction, the
high-order oscillation terms induce a change in the elements
of χ err

mn with m �= 0 and n �= 0. Although this correction is
small, it modifies the diagonal elements, which reflects in the
gate infidelity. Considering the dynamic ZZ coupling error
and assuming only the energy relaxation and pure dephasing
counting for the decoherence error, we estimate an upper
bound of the high-order oscillation error of about 1.32%,
1.27%, 1.55%, and 1.72% at the four operating points, respec-
tively. In experiment, by increasing the qubit frequency de-
tuning (parametric modulation frequency), we can effectively
suppress this intrinsic gate error induced by the high-order
oscillation terms.

IV. CONCLUSIONS

The gate fidelity we acquired, 94.0% (intrinsic average
gate fidelity), is not very high, mainly due to the decoherence
limit, but we do not think that it will become a constraint of
application of our coupler scheme. In fact, we can improve the
gate fidelity by fabricating the coupler with more proper pa-
rameters to acquire a larger derivative of J12 in an appropriate
operating regime, and thus significantly reduce the gate time,
meanwhile maintaining a zero or near-zero static ZZ coupling.

In summary, we experimentally demonstrate a parametric
iSWAP gate in a superconducting circuit based on a tunable
coupler, which allows to continuously vary the adjacent qubit
coupling from positive to negative values. We measure the
static ZZ interaction by the Ramsey-type measurement. By
utilizing the simultaneous RB protocol, we observe that the
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static ZZ coupling degrades the single-qubit gate perfor-
mance. We conduct the two-qubit iSWAP gate by applying the
fast-flux bias modulation pulse on the coupler to turn on the
parametric exchange interaction between the computational
qubits. While varying the static ZZ coupling strength, we
perform quantum process tomography measurements and nu-
merical simulations to fully investigate the error sources of
the parametric two-qubit gates. We quantitatively calculate
the dynamic ZZ coupling and extract the particular gate error
from the decoherence, dynamic ZZ coupling, and high-order
oscillation terms. Our results indicate that the decoherence
error constitutes the main error source in the gate operation,
while the increase of the dynamic ZZ coupling and high-order
oscillation error degrades the parametric gate performance.
This controllable interaction, together with the parametric
modulation techniques, is desirable for crosstalk-free multi-
qubit quantum circuits and quantum simulation applications.
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APPENDIX A: THEORY OF PARAMETRIC iSWAP GATE

In the Hamiltonian in Eq. (3), the first term represents
the resonant exchange interaction between Q1 and Q2 and its
coefficient determines the exchange rate for realizing the para-
metric iSWAP gate. The other terms represent the unwanted
high-order oscillation errors generated from the high-order
expansion of J12. Here we only show the expansion to 3ωφ .
In fact, the error accumulation is attributed to all error terms
[5,7]. Although the essential oscillation terms have different
error accumulations from the trivial ones, the overall errors
increase with varying the dc flux bias on the coupler.

We numerically calculate the high-order oscillation error
terms by using our device parameters. As shown in Fig. 1(d)
in the main text, we calculate J12, ∂J12

∂φ
, and ∂2J12

∂φ2 as changing
the coupler flux bias. Based on the data, we then acquire the
coefficients of each term in Eq. (3) at the four different coupler
flux biases discussed in the main text (Q1 and Q2 are biased at
each sweet spot; see Table I).

From Table I, we can easily find that the different high-
order oscillation terms show different trends when varying the
coupler flux. Therefore, all these terms need to be considered
to obtain the overall impact of the high-order oscillation er-
rors, which is confirmed by our simulation result. In addition,
we find that, among all the terms, the first-order oscillation
term contributes most to the gate infidelity. In fact, in our
experiment the gate error induced by the high-order oscilla-
tion terms shows a similar trend to the value of the first-order
oscillation term with varying the coupler flux bias at the four
operating points.

FIG. 5. Circuit of quantum process tomography with error matri-
ces. (a) Circuit diagram defining error matrix χ err via its relation to
χ and the desired unitary operation U = UiSWAP. (b) Circuit diagram
of the SPAM errors represented by χ prep and χmeas.

APPENDIX B: QUANTUM PROCESS TOMOGRAPHY
WITH ERROR MATRICES

To quantitatively identify the effects of the error sources
during the parametric iSWAP gate, we take advantage of the
QPT which can provide full information about the gate oper-
ation. The standard QPT is usually represented by the process
matrix χ in the Pauli basis, {En} = {I, X,Y, Z} ⊗ {I, X,Y, Z}
for two qubits. However, to facilitate error analysis, we take
another representation, the error matrix χ err as stated in
Ref. [35], by separating the desired unitary operation U =
UiSWAP from the standard process matrix χ [see Fig. 5(a)]. We
extract the error matrix from the standard χ matrix with the
relations

χ err = T χT †, Tmn = tr(E†
mEnU

†)/d, (B1)

where U = UiSWAP, d = 22 for the two-qubit parametric iSWAP

gate. We further express the χ err in matrix form as

χ err =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ err
00 χ err

01 · · · χ err
0n · · · χ err

0N

χ err
10 χ err

11
...

. . .
χ err

m0 χ err
mn

...
. . .

χ err
N0 χ err

NN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B2)

In the ideal case, the error matrix is equal to the perfect
identity operation χ I with only one nonzero element χ err

00 = 1;
otherwise χ err

00 = χ err
II,II , the only large element, reflects the

gate fidelity F = tr(χexptχideal ) = tr(χ Iχ err ), and any other
nonzero elements indicate the imperfections of the gate op-
eration. An intuitive physical picture of the χ err − χ I can
be depicted as the imaginary parts of the left-column and
top-row elements contributing to the unitary imperfections
and other elements coming from both the decoherence and
the coherence errors.

1. Eliminating SPAM errors

Since QPT is susceptible to SPAM errors, the error matrix
χ err,expt extracted from the experimental χ matrix contains
these SPAM errors [see Fig. 5(b)]. Here we use χ err,expt to
distinguish it from χ err which is simply generated from a
pure gate process. Theoretically, a pure error matrix of the
gate process, χ err, can be determined by performing standard
QPT of a series of gates (combinations of X , Y ,

√
X ,

√
Y ,

and I) [35]. However, in our experiment, the SPAM errors
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mainly come from the state preparation process, and thus
a cumbersome identification procedure is unnecessary. The
general idea is to measure SPAM errors by conducting the
standard QPT with and without the parametric iSWAP gate as
shown in Fig. 4(a) in the main text. The results are presented
as χ expt and χ expt,I respectively. Then the error matrix of the
parametric iSWAP gate is modified as

χ err ≈ χ err,expt − (χ err,expt,I − χ I ), (B3)

where χ err,expt = T χ expt T †, Tmn = tr(E†
mEnU

†
iSWAP

)/d;
χ err,expt,I = V χ expt,IV †, and Vmn = tr(E†

mEnI†)/d; d = 22

for the two-qubit parametric iSWAP gate.

2. Extracting dynamic ZZ coupling error, decoherence error,
and high-order oscillation error

After eliminating SPAM errors, we can simply separate
the error matrix into the coherent part and decoherent part as
χ err = χdec + χ coh. We first extract the dynamic ZZ coupling
error since this kind of systematic unitary error can be easily
determined for its specific location in the χ err matrix. As we
expand the unitary error in the Pauli basis in terms of U err =∑

n uerr
n En, all the components of U err can be determined

by the one-to-one correspondence with uerr
n = iIm(χ err

n0 )/F or
uerr

n = iIm(χ err
0n )/F . The only large imaginary element χ err

II,ZZ
(χ err

ZZ,II ), in the left column (top row) in our experimental error
matrix, indicates that the dynamic ZZ coupling contributes
most to the gate infidelity while other attributions of unitary
errors could be small. The relation between the unitary error
evolution and error Hamiltonian can be expressed as U err =
eiH errt , where H err = ∑

n herr
n En. Therefore, we can further

determine herr
ZZ which corresponds to the dynamic ZZ coupling

parasitizing in the parametric iSWAP gate by the relation herr
ZZ =

i uerr
ZZ
t = − Im(χ err

II,ZZ )
t .

Through diagonalizing the error matrix, we can get the
real eigenvalues {λ0, λ1, . . . , λ15} of χ err which are ordered
as λ0 � λ1 � · · · � λ15. It provides an intuitive evolution
representation of the gate and helps one to distinguish the
decoherence error from the unitary imperfections [35]. The
decoherence errors at the four operating points can be ex-
tracted by the relation �Fdec = 1 − λ0 [see Fig. 4(d)]. The
results demonstrate a near-constant value of 5.9% which is
consistent with the initial settings of the same gate time. From
the characteristics of the error matrix, different decoherence
mechanisms account for the most small peaks in the error
matrix and the major decoherence channel is the energy
relaxation and pure dephasing of the qubits.

Finally, the high-order oscillation error can be simply as-
sessed from the decoherence error and dynamic ZZ coupling
error. As a certain amount of the decoherence error may be
modified by its interference with the coherent imperfections,
such as high-order oscillation error in our experiment, we,
therefore, can estimate the upper bound of the high-order
oscillation error through a relation �Fosc = 1 − F − �FT1,φ

−
�FZZ,D. The corresponding results are 1.32%, 1.27%, 1.55%,
and 1.72% at the four operating points, respectively.

APPENDIX C: DEVICE AND EXPERIMENTAL SETUP

The tunable coupling device consists of two Xmon qubits
(Q1, Q2) coupled via a coupler (C). Our sample is measured in
a dilution refrigerator at a base temperature of about 20 mK.
The device fabrication, coupler geometry, and measurement
circuitry are similar to that presented in Ref. [14]. For a full
manipulation of the device, we use three Arbitrary Waveform
Generators (AWGs) (two Tek5014C and one Tek70002A).
One AWG (Tek5014C) is connected to the input-output line
for simultaneous readout of the qubits; meanwhile, another
channel is used to realize individual Z control of Q1 (with
an extra 10 dB attenuator). The second AWG (Tek5014C),
synchronized with the first one, provides two pairs of sideband
modulations for XY control. The XY control signals are gen-
erated from a single microwave signal generator modulated
with different sideband frequencies. This method of control
guarantees stable phase differences during the quantum to-
mography experiments. The third AWG (Tek70002A) directly
generates flux pulse to realize individual Z control of Q2 and
coupler. A derivative removal adiabatic gate (DRAG) pulse is
used for single-qubit rotation and pulse correction to reduce
phase error and leakage to higher transmon levels [39].

The readout cavity is coupled to a transmission line, which
connects to a Josephson parametric amplifier (JPA) [40–43]
allowing for a high-fidelity simultaneous single-shot readout
for both the qubits. The JPA, which is pumped and biased by
a signal generator and a voltage source (YOKOGAWA GS210
DC Voltage/Current Source), respectively, has a gain of more
than 20 dB and a bandwidth of about 313 MHz at 20 mK
[see gain profile in Fig. 6(a)]. It is used as the first stage of
amplification followed by a high-electron mobility transistor
amplifier at 4 K and room-temperature amplifiers, allowing
for high-fidelity single-shot measurements of the qubits. In
the JPA circuit design, 50� impedance matching is applied
without any other specific impedance engineering.

APPENDIX D: MEASUREMENT RESULTS

1. Readout properties

With the help of the JPA, the single-qubit gates and readout
measurements are performed at the sweet spot of each qubit
individually with high fidelities. The coupler frequency is
tuned to 5.905 GHz to turn off the coupling between two
qubits. Figure 6(b) shows the I-Q data for single-shot qubit-
state differentiation of each qubit when another one is in its
thermal steady state. For each picture, the dot on the left
represents the qubit prepared in a ground state |0〉 while the
dot on the right identifies the qubit prepared in an excited
state |1〉. Mismatch between the dispersive shift and decay
of the readout resonator accounts for a nonperfect distinction
between the ground state and excite state on each qubit. Due to
the nonperfect distinction between the qubit states and thermal
population of qubits and coupler, we use a calibration matrix
to reconstruct the readout results based on Bayes’s rule [14].

2. Qubit parameters

Readout frequencies, qubit frequencies, qubit coherence
times, qubit anharmonicities, and the dispersive shift between
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FIG. 6. (a) JPA gain vs signal frequency. The JPA has a band-
width of about 313 MHz over 20 dB gain, which is pumped
separately at 6.758 GHz, marked by a black arrow. The readout
frequencies of Q1 and Q2 are marked by dashed grey and yellow
lines, respectively. (b) The I-Q data of Q1 (left panel) and Q2 (right
panel) for the single-shot qubit-state differentiation. For each picture,
the dot on the left represents the qubit prepared in ground state
|0〉 while the dot on the right indicates the qubit prepared in the
excited state |1〉. (c) Flux bias line orthogonalization for Q1 (left
panel), Q2 (middle panel), and the coupler (right panel) for Z matrix
calibration. We measure the frequency response to each flux bias
line by changing the voltage applied on it. The red (dots), yellow
(squares), and green (diamonds) lines in each panel represent the Q1

flux bias line (Q1 FL), Q2 flux bias line (Q2 FL), and coupler flux bias
line (C FL), respectively. The coupler frequency can be measured by
the pulse sequence shown in Fig. 7(e). By measuring the slopes of
these lines, we can get the Z-crosstalk matrix which can be used to
correct dc crosstalk between each flux bias line.

qubits and readout cavity are all presented in Table II. The
dispersive shift between each qubit and the coupler can be cal-
culated through quantization of the qubit-coupler-qubit sys-
tem. The readout frequencies of the qubits span a frequency
range of about 50 MHz, well falling within the bandwidth of
the JPA.

Although the coupler has no readout cavity, we can ex-
tract the coupler frequency by means of the dispersive shift
between the qubit and coupler. The pulse sequence scheme
is shown in Fig. 7(e). We scan the coupler frequency with
a 500-ns rectangular pulse through the XY control line of
Q1, and then excite the Q2 by a wide time-domain Gaussian

TABLE II. Device parameters.

Qubit parameter Q1 Q2 Coupler

Readout frequency (GHz) 6.825 6.864
Qubit frequency (GHz) 4.961 4.926 5.977
T1 (sweet spot) (μs) 14 13.7
T2 (sweet spot) (μs) 8.4 4
T2E (sweet spot) (μs) 8.7 4.4
Ec/2π (MHz) 206 202 254 (Simulation)
χqr/2π (MHz) 0.4 0.4

pulse at its bare frequency. Once the frequency is swept across
the frequency of the coupler, the coupler will be excited and
dispersively shifts the frequency of Q2, leading to a condition
that Q2 is unable to be excited with a drive pulse at its
bare frequency. Therefore, we can get the coupler frequency
spectrum as varying the coupler flux bias, as shown in the
bottom panel in Fig. 7(f).

3. Deconvolution and Z-crosstalk calibration matrix

In the experiment, we use a fast-flux control to manip-
ulate the qubits and coupler by driving a current into its
corresponding superconducting quantum interference device
(SQUID) loop. Nevertheless, the return path of the current
on each line is not explicitly controlled and, accordingly,
there always exists a dc crosstalk between each flux line.
Therefore, varying the bias on any individual flux line actually
changes all frequencies of the qubit and coupler. Fortunately,
the frequency dependency is approximately linear for a small
voltage, so the crosstalk can be corrected by the orthogonal-
ization of the flux bias lines through multiplying the correction
matrix [30]. The flux bias line orthogonalization is shown in
Fig. 6(c). We measure the frequency response from both the
two qubits and the coupler, and the Z-crosstalk calibration
matrix (Q1 Q2 C) is presented as follows:

M̃z = M−1
z =

⎛
⎝ 0.9963 0.0096 0.0264

−0.0798 0.9997 0.0094
−0.0116 0.0384 0.9974

⎞
⎠,

where Mz is the qubit frequency response matrix. Actually
the Z crosstalk is very small owing to a good ground-plane
connection by using airbridges [44] even if the coupler is
designed geometrically close to the two qubits.

4. Qubit coupling strength

To simulate and optimize the gate fidelity for the single-
qubit gates and the parametric iSWAP gate, we should effi-
ciently get the qubit-qubit effective coupling strength J12. For
a full understanding and control of J12, we need to measure
and extract the qubit-coupler direct coupling strength gi (i =
1, 2) and qubit-qubit direct coupling strength g12. First, we
measure the qubit-coupler interaction by performing qubit-
coupler energy-swap experiments [15,45]. The corresponding
pulse sequence used for the measurement, g2 as an exam-
ple, is shown in Fig. 7(a). We tune the coupler frequency
into resonance with Q2, meanwhile keeping Q1 away by
modifying the Q1 frequency. The energy-swap pattern is
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FIG. 7. (a) Pulse sequence for measuring the coupling strength g2 between Q2 and the coupler. (b) Qubit-coupler energy swap. We tune the
coupler frequency into resonance with one qubit, for instance, Q2. At the maximum resonance point, we can extract the qubit-coupler direct
coupling strength gic/2π = 76.9 MHz (i = 1, 2). (c)–(e) Pulse sequence for measuring and extracting the qubit-qubit direct coupling strength
g12/2π , the qubit-qubit static ZZ coupling strength ξZZ,S/2π and the coupler frequency, respectively. (f) Top: Qubit-qubit effective coupling
strength J12/2π vs coupler flux bias. The black dots are raw data extracted from Fig. 8, while the yellow line is a fitting result to extract g12.
Middle: Qubit-qubit static ZZ coupling strength ξZZ,S/2π vs coupler flux bias. The ZZ coupling strength is measured when the two qubits are
biased at each sweet spot. Bottom: Coupler frequency vs coupler flux bias. We measure the coupler frequency by probing the dispersive shift
of the qubit frequency when the coupler is pulsed into the excited state.

shown in Fig. 7(b). Then, we fit and extract the qubit-qubit
interaction from a qubit-qubit energy-swap experiment. The
pulse sequence for extracting g12 is shown in Fig. 7(c). The
two qubits are initialized in the ground state at each sweet spot
with a detuning of 34.2 MHz. The coupler is originally set to
the critical point where the coupling between the two qubits is
nearly canceled out. A π pulse is applied on Q2, followed by
flux pulses on Q1 and the coupler to bring Q1 into resonance
with Q2 and turn on the qubit interaction. In this way, we can
directly measure J12 as varying the coupler flux bias when the
two qubits are in resonance according to the Hamiltonian in
this scheme. We extract the corresponding qubit-qubit direct
coupling strength g12 by fitting J12 as a function of the flux
bias on the coupler, as shown in the top panel of Fig. 7(f).
All relevant parameters of the coupling strength are shown in
Table III.

The single-qubit gate fidelity is affected by the qubit-
qubit static ZZ-crosstalk coupling. To perform a high-fidelity
single-qubit gate, the static ZZ crosstalk should be reduced
or eliminated through optimization of circuit parameters and
experimental sequences. We extract the static ZZ-crosstalk

TABLE III. Coupling parameters.

Coupling parameter Simulation Experiment

g1r/2π (MHz) 86.6
g2r/2π (MHz) 90.6
Cic (i = 1, 2) (fF) 2.4
C12 (fF) 0.13
gi/2π (i = 1, 2) (MHz) 81.3 76.9
g12/2π (MHz) 3.8 6.74

coupling strength at each sweet spot by varying the cou-
pler frequency using Ramsey-type measurements, which in-
volve probing the frequency of Q1 with initializing Q2 in
either its ground or excited state [30]. The pulse sequence is
shown in Fig. 7(d). At the critical coupler frequency ωc,off =
5.905 GHz, as shown in the middle panel of Fig. 7(f), the
measured static ZZ coupling strength ξZZ,S ∼ 1 kHz, limited
by the detection resolution.

To perform a fast and high-fidelity two-qubit parametric
iSWAP gate operation, we need to balance the effective cou-
pling strength �

2
∂J12
∂φ

and the unwanted error terms. Appar-
ently, a fast gate operation can be achieved by modifying
the coupler frequency closer to the frequency of the com-
putational qubit, or increasing the amplitude of the coupler
flux modulation pulse; however, unwanted real excitations
between the qubit and coupler or more serious high-order
oscillation errors may occur. We characterize the tunability
of the coupler and estimate the threshold of operating the
coupler by the pulse sequence shown in Fig. 7(c). The results
are plotted in Fig. 8. In Fig. 8, we can easily find that the
qubit-qubit swap interaction is completely off in the regime
marked by a dashed dark line, while a threshold, indicated
by a dashed red line, defines a regime of non-negligible
excitation of the coupler. When the coupler frequency is lower
than the threshold, small ripples in the population oscillation
of Q2 start to show up, indicating the leakage out of the
computational space due to the real excitations between the
qubits and coupler. Besides, the ZZ-crosstalk error may also
affect the gate operation if the coupler frequency is tuned
to be close to the qubit frequency. By a simulation and
parameter modulation using the data shown in Fig. 1(d) in
the main text and Fig. 7(f), we can achieve the optimization
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FIG. 8. Population of Q2 as a function of the coupler frequency
and the swap time. The swap pattern clearly demonstrates the tun-
ability of the coupling strength. The dashed dark line indicates the
condition where the coupling is off, while the dashed red line marks
the threshold for non-negligible excitation of the coupler. To perform
a parametric iSWAP gate, we should choose an appropriate coupler
frequency and amplitude of parametric modulation pulse to keep a
nonexcitation under this threshold.

of the parameters and sequences to reduce the gate error and
improve the gate fidelity.

APPENDIX E: NUMERICAL SIMULATIONS
OF THE PARAMETRIC iSWAP GATE

We simulate the process of the parametric iSWAP gate
under different conditions to verify the two-qubit gate error by
means of QUTIP [46,47]. Above all, the numerical simulations
should be strictly consistent with the real experiments, so
we set all the qubit parameters according to measurement
results. We completely follow the experimental procedures
in the simulation including pulse shape calibration, phase
modulation, and quantum tomography.

At first, we carry out the simulation based on the Hamilto-
nian which restricts the Hilbert space to the lowest two states
of each transmon qubit [24,25], The static Hamiltonian can be
written as

H/h̄ =
∑
i=1,2

−1

2
ωiσ

z
i − 1

2
ωcσ

z
c

+
∑
i=1,2

gi(σ
+
i σ−

c + σ+
c σ−

i ) + g12(σ+
1 σ−

2 + σ+
2 σ−

1 ),

(E1)

where ω1,2 and ωc are the frequencies of Q1, Q2 and the
coupler, respectively, gi (i = 1, 2) is the coupling of each qubit

to the coupler, and g12 is the direct coupling strength between
two qubits. In this model, we conduct the parametric iSWAP

gate by applying a sinusoidal fast-flux bias modulation pulse
on the coupler. We choose four different coupler flux bias
points, as mentioned in the main text, to analyze the error
source. After the calibration at these four operating points (the
coupler frequencies are 5.905, 5.491, 5.472, and 5.452 GHz
with respect to the static ZZ coupling at 0, −0.23, −0.28, and
−0.34 MHz, respectively), we perform simulated quantum
process tomography to characterize the gate quality. The sim-
ulation fidelities at each point are 94.3%, 87.0%, 85.6%, and
84.0%. A distinct decreasing trend in fidelity with increasing
the static ZZ coupling accords with the experimental results.
It predicts that the unwanted high-order oscillation error and
dynamic ZZ error account for degradation of the parametric
iSWAP gate, while rapid decline of the last three points reveals
that, for accurate description of the gate, we should take more
energy levels into account.

Therefore, further simulation based on the Hamiltonian
which includes anharmonicity terms for each qubit has to be
carried out. The static Hamiltonian now can be written as

H/h̄ =
∑
i=1,2

ωia
†
i ai + ωca†

cac

−
∑
i=1,2

Eci

2
a†

i a†
i aiai − Ecc

2
a†

ca†
cacac

+
∑
i=1,2

gi(aia
†
c + aca†

i ) + g12(a1a†
2 + a2a†

1), (E2)

where Eci (i = 1, 2) and Ecc are the anharmonicity of Q1, Q2

and the coupler. This model takes both the nonlinearity of the
superconducting qubit and more relevant energy levels into
account so that it is closer to the practice. All the steps remain
unchanged in the simulation except for the operators when
solving differential equations. We simulate the parametric
gate with the qubit decoherence to explore the upper bound
of the intrinsic two-qubit gate fidelity. As shown in Fig. 4(c)
in the main text, the simulation results and experimental
data are plotted together. It is apparent that the simulation
fidelity decreases as the static ZZ coupling arises, which is
in agreement with our experimental observation. We attribute
this dependency to the previously mentioned high-order oscil-
lation terms as well as the dynamic ZZ coupling parasitizing
in the two-qubit gate process. Through calculation of these
error terms in the main text, it provides a guiding principle to
improve the gate fidelity of the parametric iSWAP gate in the
future.

[1] R. A. Pinto, A. N. Korotkov, M. R. Geller, V. S. Shumeiko, and
J. M. Martinis, Analysis of a tunable coupler for superconduct-
ing phase qubits, Phys. Rev. B 82, 104522 (2010).

[2] A. A. Houck, H. E. Türeci, and J. Koch, On-chip quantum
simulation with superconducting circuits, Nat. Phys. 8, 292
(2012).

[3] J. M. Gambetta, J. M. Chow, and M. Steffen, Building logical
qubits in a superconducting quantum computing system, npj
Quantum Inf. 3, 1 (2017).

[4] C. Song, K. Xu, H. Li, Y.-R. Zhang, X. Zhang, W. Liu, Q. Guo,
Z. Wang, W. Ren, J. Hao et al., Generation of multicomponent
atomic Schrödinger cat states of up to 20 qubits, Science 365,
574 (2019).

[5] P. Mundada, G. Zhang, T. Hazard, and A. Houck, Suppression
of Qubit Crosstalk in a Tunable Coupling Superconducting
Circuit, Phys. Rev. Appl. 12, 054023 (2019).

[6] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta,
Procedure for systematically tuning up cross-talk in

022619-11

https://doi.org/10.1103/PhysRevB.82.104522
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/s41534-016-0004-0
https://doi.org/10.1126/science.aay0600
https://doi.org/10.1103/PhysRevApplied.12.054023


X. Y. HAN et al. PHYSICAL REVIEW A 102, 022619 (2020)

the cross-resonance gate, Phys. Rev. A 93, 060302(R)
(2016).

[7] D. C. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J. M.
Chow, and J. M. Gambetta, Universal Gate for Fixed-Frequency
Qubits via a Tunable Bus, Phys. Rev. Appl. 6, 064007 (2016).

[8] Y. Lu, S. Chakram, N. Leung, N. Earnest, R. K. Naik, Z. Huang,
P. Groszkowski, E. Kapit, J. Koch, and D. I. Schuster, Universal
Stabilization of a Parametrically Coupled Qubit, Phys. Rev.
Lett. 119, 150502 (2017).

[9] M. Reagor, C. B. Osborn, N. Tezak, A. Staley, G.
Prawiroatmodjo, M. Scheer, N. Alidoust, E. A. Sete, N. Didier,
M. P. da Silva et al., Demonstration of universal parametric
entangling gates on a multi-qubit lattice, Sci. Adv. 4, eaao3603
(2018).

[10] M. Roth, M. Ganzhorn, N. Moll, S. Filipp, G. Salis, and S.
Schmidt, Analysis of a parametrically driven exchange-type
gate and a two-photon excitation gate between superconducting
qubits, Phys. Rev. A 96, 062323 (2017).

[11] S. Poletto, J. M. Gambetta, S. T. Merkel, J. A. Smolin, J. M.
Chow, A. D. Córcoles, G. A. Keefe, M. B. Rothwell, J. R.
Rozen, D. W. Abraham, C. Rigetti, and M. Steffen, Entangle-
ment of Two Superconducting Qubits in a Waveguide Cavity via
Monochromatic Two-Photon Excitation, Phys. Rev. Lett. 109,
240505 (2012).

[12] J. M. Chow, J. M. Gambetta, A. W. Cross, S. T. Merkel, C.
Rigetti, and M. Steffen, Microwave-activated conditional-phase
gate for superconducting qubits, New J. Phys. 15, 115012
(2013).

[13] J. M. Chow, A. D. Córcoles, J. M. Gambetta, C. Rigetti,
B. R. Johnson, J. A. Smolin, J. R. Rozen, G. A. Keefe,
M. B. Rothwell, M. B. Ketchen, and M. Steffen, Simple All-
Microwave Entangling Gate for Fixed-Frequency Supercon-
ducting Qubits, Phys. Rev. Lett. 107, 080502 (2011).

[14] X. Li, T. Cai, H. Yan, Z. Wang, X. Pan, Y. Ma, W. Cai, J.
Han, Z. Hua, X. Han et al., Tunable Coupler for Realizing a
Controlled-Phase Gate with Dynamically Decoupled Regime in
a Superconducting Circuit, Phys. Rev. Appl. 14, 024070 (2020).

[15] R. C. Bialczak, M. Ansmann, M. Hofheinz, M. Lenander, E.
Lucero, M. Neeley, A. D. O’Connell, D. Sank, H. Wang, M.
Weides, J. Wenner, T. Yamamoto, A. N. Cleland, and J. M.
Martinis, Fast Tunable Coupler for Superconducting Qubits,
Phys. Rev. Lett. 106, 060501 (2011).

[16] Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends,
J. Kelly, B. Campbell, Z. Chen, B. Chiaro et al., Qubit Archi-
tecture with High Coherence and Fast Tunable Coupling, Phys.
Rev. Lett. 113, 220502 (2014).

[17] M. R. Geller, E. Donate, Y. Chen, M. T. Fang, N. Leung, C.
Neill, P. Roushan, and J. M. Martinis, Tunable coupler for
superconducting Xmon qubits: Perturbative nonlinear model,
Phys. Rev. A 92, 012320 (2015).

[18] J. Ghosh and A. G. Fowler, Leakage-resilient approach to fault-
tolerant quantum computing with superconducting elements,
Phys. Rev. A 91, 020302(R) (2015).

[19] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell
et al., Quantum supremacy using a programmable supercon-
ducting processor, Nature (London) 574, 505 (2019).

[20] L. Lamata, A. Parra-Rodriguez, M. Sanz, and E. Solano,
Digital-analog quantum simulations with superconducting cir-
cuits, Adv. Phys. X 3, 1457981 (2018).

[21] O. Kyriienko and A. S. Sørensen, Floquet Quantum Simulation
with Superconducting Qubits, Phys. Rev. Appl. 9, 064029
(2018).

[22] Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y.
Ma, H. Wang, Y. P. Song, Z.-Y. Xue, and L. Sun, Experimental
Implementation of Universal Nonadiabatic Geometric Quantum
Gates in a Superconducting Circuit, Phys. Rev. Lett. 124,
230503 (2020).

[23] W. Cai, J. Han, F. Mei, Y. Xu, Y. Ma, X. Li, H. Wang, Y. P.
Song, Z.-Y. Xue, Z.-q. Yin, S. Jia, and L. Sun, Observation
of Topological Magnon Insulator States in a Superconducting
Circuit, Phys. Rev. Lett. 123, 080501 (2019).

[24] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin,
M. H. Devoret, and R. J. Schoelkopf, Quantum-information
processing with circuit quantum electrodynamics, Phys. Rev. A
75, 032329 (2007).

[25] S. Bravyi, D. P. DiVincenzo, and D. Loss, Schrieffer-Wolff
transformation for quantum many-body systems, Ann. Phys.
326, 2793 (2011).

[26] F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell,
T. P. Orlando, S. Gustavsson, and W. D. Oliver, Tunable
Coupling Scheme for Implementing High-Fidelity Two-Qubit
Gates, Phys. Rev. Appl. 10, 054062 (2018).

[27] A. O. Niskanen, Y. Nakamura, and J.-S. Tsai, Tunable coupling
scheme for flux qubits at the optimal point, Phys. Rev. B 73,
094506 (2006).

[28] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from the
Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[29] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R.
Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M.
Girvin, and R. J. Schoelkopf, Demonstration of two-qubit al-
gorithms with a superconducting quantum processor, Nature
(London) 460, 240 (2009).

[30] M. Reed, Entanglement and quantum error correction with
superconducting qubits, Ph.D. thesis, Yale University, New
Haven, Connecticut, 2013.

[31] J. M. Chow, Quantum information processing with supercon-
ducting qubits, Ph.D. thesis, Yale University, New Haven, Con-
necticut, 2013.

[32] M. Kounalakis, C. Dickel, A. Bruno, N. K. Langford, and G. A.
Steele, Tuneable hopping and nonlinear cross-Kerr interactions
in a high-coherence superconducting circuit, npj Quantum Inf.
4, 1 (2018).

[33] M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow, and J. M.
Gambetta, Experimental Demonstration of Fault-Tolerant State
Preparation with Superconducting Qubits, Phys. Rev. Lett. 119,
180501 (2017).

[34] J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S.
Bishop, A. A. Houck, B. R. Johnson, L. Frunzio, S. M. Girvin,
and R. J. Schoelkopf, Randomized Benchmarking and Process
Tomography for Gate Errors in a Solid-State Qubit, Phys. Rev.
Lett. 102, 090502 (2009).

[35] A. N. Korotkov, Error matrices in quantum process tomography,
arXiv:1309.6405.

[36] X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P.
Song, Z.-Y. Xue, Z.-q. Yin, and L. Sun, Perfect Quantum State
Transfer in a Superconducting Qubit Chain with Parametrically
Tunable Couplings, Phys. Rev. Appl. 10, 054009 (2018).

022619-12

https://doi.org/10.1103/PhysRevA.93.060302
https://doi.org/10.1103/PhysRevApplied.6.064007
https://doi.org/10.1103/PhysRevLett.119.150502
https://doi.org/10.1126/sciadv.aao3603
https://doi.org/10.1103/PhysRevA.96.062323
https://doi.org/10.1103/PhysRevLett.109.240505
https://doi.org/10.1088/1367-2630/15/11/115012
https://doi.org/10.1103/PhysRevLett.107.080502
https://doi.org/10.1103/PhysRevApplied.14.024070
https://doi.org/10.1103/PhysRevLett.106.060501
https://doi.org/10.1103/PhysRevLett.113.220502
https://doi.org/10.1103/PhysRevA.92.012320
https://doi.org/10.1103/PhysRevA.91.020302
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1080/23746149.2018.1457981
https://doi.org/10.1103/PhysRevApplied.9.064029
https://doi.org/10.1103/PhysRevLett.124.230503
https://doi.org/10.1103/PhysRevLett.123.080501
https://doi.org/10.1103/PhysRevA.75.032329
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1103/PhysRevApplied.10.054062
https://doi.org/10.1103/PhysRevB.73.094506
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1038/nature08121
https://doi.org/10.1038/s41534-018-0088-9
https://doi.org/10.1103/PhysRevLett.119.180501
https://doi.org/10.1103/PhysRevLett.102.090502
http://arxiv.org/abs/arXiv:1309.6405
https://doi.org/10.1103/PhysRevApplied.10.054009


ERROR ANALYSIS IN SUPPRESSION OF UNWANTED … PHYSICAL REVIEW A 102, 022619 (2020)

[37] C. Zu, W.-B. Wang, L. He, W.-G. Zhang, C.-Y. Dai, F. Wang,
and L.-M. Duan, Experimental realization of universal geomet-
ric quantum gates with solid-state spins, Nature (London) 514,
72 (2014).

[38] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, 2000).

[39] F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm,
Simple Pulses for Elimination of Leakage in Weakly Nonlinear
Qubits, Phys. Rev. Lett. 103, 110501 (2009).

[40] M. Hatridge, R. Vijay, D. H. Slichter, J. Clarke, and I. Siddiqi,
Dispersive magnetometry with a quantum limited SQUID para-
metric amplifier, Phys. Rev. B 83, 134501 (2011).

[41] K. W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi, Observing
single quantum trajectories of a superconducting quantum bit,
Nature (London) 502, 211 (2013).

[42] S. S. Roy, A. Shukla, and T. S. Mahesh, NMR implementation
of a quantum delayed-choice experiment, Phys. Rev. A 85,
022109 (2012).

[43] A. Kamal, A. Marblestone, and M. Devoret, Signal-to-pump
back action and self-oscillation in double-pump Josephson
parametric amplifier, Phys. Rev. B 79, 184301 (2009).

[44] Z. Chen, A. Megrant, J. Kelly, R. Barends, J. Bochmann, Y.
Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Mutus et al.,
Fabrication and characterization of aluminum airbridges for
superconducting microwave circuits, Appl. Phys. Lett. 104,
052602 (2014).

[45] M. Ansmann, H. Wang, R. C. Bialczak, M. Hofheinz, E.
Lucero, M. Neeley, A. O’Connell, D. Sank, M. Weides, J.
Wenner et al., Violation of Bell’s inequality in Josephson phase
qubits, Nature (London) 461, 504 (2009).

[46] J. R. Johansson, P. D. Nation, and F. Nori, QUTIP: An
open-source PYTHON framework for the dynamics of open
quantum systems, Comput. Phys. Commun. 183, 1760
(2012).

[47] J. R. Johansson, P. D. Nation, and F. Nori, QUTIP 2: A PYTHON

framework for the dynamics of open quantum systems, Comput.
Phys. Commun. 184, 1234 (2013).

022619-13

https://doi.org/10.1038/nature13729
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1103/PhysRevB.83.134501
https://doi.org/10.1038/nature12539
https://doi.org/10.1103/PhysRevA.85.022109
https://doi.org/10.1103/PhysRevB.79.184301
https://doi.org/10.1063/1.4863745
https://doi.org/10.1038/nature08363
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019

