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We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have
vanishing quantum mutual information between macroscopically separated regions and are thus the most classical
ones among all possible quantum ground states. This statement is obvious only when the symmetry-breaking
ground states are simple product states, e.g., at the factorization point. On the other hand, symmetry-breaking
states are in general entangled along the entire ordered phase, and to show that they actually feature the least
macroscopic correlations compared to their symmetric superpositions is highly nontrivial. We prove this result
in general, by considering the quantum mutual information based on the two-Rényi entanglement entropy and
using a locality result stemming from quasiadiabatic continuation. Moreover, in the paradigmatic case of the
exactly solvable one-dimensional quantum XY model, we further verify the general result by considering also
the quantum mutual information based on the von Neumann entanglement entropy.
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I. INTRODUCTION

The emergence of a macroscopic classical behavior from
a microscopic quantum world can be explained in terms of
decoherence to the environment that quickly destroys the
coherent superpositions of macroscopic objects (Schrödinger
cats) [1]. The selected pointer states must then be factorized
states with respect to a tensor product structure that is local
in real space [2,3]. Similarly, superselection induced by
decoherence due to weak interactions with the environment
plays a key role also in the phenomenon of spontaneous
symmetry breaking, where different ordered sectors with
broken symmetry are dynamically disconnected and are thus
the only states that are metastable [4], from which comes the
notion of spontaneous symmetry breaking [5].

In the paradigmatic case of the quantum Ising model, the
ground space of the ferromagnetic phase at zero transverse
field h is spanned by two orthogonal product states |0〉⊗N

and |1〉⊗N which are in the same class of pointer states of
the typical decoherence argument, while the symmetric states
�± = 1/

√
2(|0〉⊗N ± |1〉⊗N ) realize macroscopic coherent

superpositions that are not stable under decoherence [1,4].
Therefore, at zero transverse field h, the situation is very
clear: the only stable states are those that maximally break the
symmetry of the Hamiltonian and, at the same time, those that
feature vanishing macroscopic total correlations, including
entanglement, between spatially separated regions.

As we turn on the external field h, we have a whole range
of values where, before a critical value h = hc is reached,
there is a magnetic order associated to spontaneous symmetry
breaking [6], and the decoherence argument applies within
the entire ordered phase. This means that, again, the only
stable states are those that maximally break the Hamiltonian
symmetry [7,8]. However, now the symmetry-breaking states
are entangled, and their mixed-state reductions on arbitrary
subsystems possess in general nonvanishing entanglement
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[9–11], as well as quantum [12–14] and classical correlations
[6]. Indeed, the symmetry-breaking ground states can be,
“locally,” more entangled than some nearby symmetric states
[15]. On the other hand, it is always implicitly assumed that
such states are not macroscopically correlated, while their
symmetric superpositions are, in complete analogy with the
case h = 0. Although this is a very plausible picture, a rigorous
proof has never been provided, due to the mathematical
difficulties in dealing with measures of entanglement and
correlations based on the von Neumann entropy; see, e.g.,
the difficulties in proving the boundary (area) law in generic
gapped systems [16,17], or in proving the stability of topo-
logical entanglement entropy in topologically ordered states
[18]. The symmetry-breaking states obey the boundary law
for entanglement [19–22], while the macroscopic correlations
featured by the superposition of two different symmetry-
broken sectors are of order 1.

The question is then about which quantity one should
look at in order to distinguish the presence of macroscopic
correlations, among all possible sources of entanglement and
correlations. Historically, the key concepts that have been
considered are the o-ff diagonal long range order (ODLRO)
[23] and, more recently, the two-site concurrence (entangle-
ment of formation) at large distance [24,25]. If there is either
ODLRO or nonvanishing concurrence between two sites in
different clusters A and B, then also the two clusters must be
entangled, since the total state of the global system is pure.
This is an important point, because the reduced subsystems
being in a separable state does not imply that there must be no
entanglement between the two clusters in a pure state. Even if
all the remaining correlations are classical, they are due to the
fact that the overall state is a pure entangled state.

On the other hand, the reverse argument need not apply:
it is possible that macroscopic clusters are entangled even
if measures of two-point correlations, like the concurrence,
are vanishing. For example, this can happen in the two-
dimensional toric code [26] or in the one-dimensional cluster
models [27–29] where all two-site concurrences are identically
zero and yet the macroscopic block entanglement entropy is
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FIG. 1. A many-body quantum system is partitioned in three
distinguishable subsystems, A,B, and the remainder E, so that
the total Hilbert space acquires the tensor product structure H =
HA ⊗ HB ⊗ HE . The quantity d(A,B) is the distance between the
two regions A and B, and l is the distance defining the new effective
support after an adiabatic deformation of operators with initial support
on HA and HB .

finite. Also, states that possess volume law for the bipartite en-
tanglement typically have no two-site entanglement, because
of monogamy. Moreover, concurrence and ODLRO have to
be computed for every specific model and cannot provide
universal classifications.

In the present work, we will show that macroscopic
correlations are generally nonvanishing in generic symmetric
states and vanishing in symmetry-breaking states. To this end,
we consider the total correlations (classical plus quantum)
between two generic subsystems A and B of the total system,
as measured by the mutual information [30]:

I(A|B) = S(A) + S(B) − S(AB), (1)

where S(X) is the von Neumann entropy of the density matrix
pertaining to subsystem X, as shown pictorially in Fig. 1.
The mutual information is indeed a bona fide measure of
total correlations (classical plus quantum) [31]. If for two
arbitrary subsystems A,B spatially separated by arbitrarily
large distances d(A,B) the mutual information I(A|B) is
vanishing, we are assured that there are no macroscopic
correlations and, in particular, no macroscopic entanglement
and no macroscopic quantum correlations (all correlation and
entanglement measures are non-negative defined). Otherwise,
taking into account that the total system is in a global pure
state, the two subsystems must be macroscopically entangled
and quantum correlated. It is immediate to verify that I(A|B)
vanishes on symmetry-breaking states that are product states of
the form |0〉⊗N and |1〉⊗N , while for symmetric superpositions
�± it is always of order 1, irrespective of the actual value of
the distance d(A,B).

We will show that the above result is in fact valid in
general. In order to prove such a statement, our strategy is
the following. Starting from a factorization point, i.e., a point
in which the system admits a fully separable pointer state

as global ground state [32–35], we will consider adiabatic
deformations of the ground state and we will study the behavior
of the macroscopic mutual information. The deformation
corresponds to the adiabatic continuation of the ground state
obtained by switching on the transverse magnetic field h. We
will prove that, in the entire symmetry-breaking phase, the
total macroscopic correlations and, a fortiori, the macroscopic
entanglement, as measured by the mutual information, vanish
in the maximally symmetry-breaking ground states at large
spatial separations between arbitrarily selected macroscopic
subsystems. On the other hand, we will also prove that, as
long as the deformation is sufficiently small, the macroscopic
mutual information remains finite in symmetric states. Later
on, we will apply the results of the general analysis to specific
spin models, showing that the result holding for slightly
deformed symmetric states is in fact valid for all symmetric
states in the entire symmetry-breaking (ordered) phase, until a
quantum phase transition point is reached.

Proving the general result analytically would be quite a
daunting task if one were to consider the von Neumann
entropy S. Rather, we will resort to a related quantity, the
two-Rényi entropy, S2, and the corresponding two-Rényi
mutual information. For specific, computable, examples, we
will then show that the general conclusions reached using
the two-Rényi entropy hold as well using the von Neumann
entropy.

The Rényi entropies of index α are defined as

Sα(A) = (1 − α)−1 log2 Trρα
A, (2)

and they are all bona fide entanglement monotones [36]. In
particular, the two-Rényi entropy S2 is an experimentally
accessible quantity, since it is the expectation value of the
swap operator on two copies of a quantum state [37], while
the von Neumann entropy S is not an experimentally friendly
observable, because it requires complete state tomography,
which is essentially impossible on a many-body state. Concrete
proposals for measuring S2 resort to quantum switches [38],
or to multiparticle interferometry [39].

We thus consider the two-Rényi mutual information defined
as

I2(A|B) := S2(A) + S2(B) − S2(AB). (3)

Unlike the quantum mutual information defined in Eq. (1), the
two-Rényi mutual information may not be positive defined for
every state in Hilbert space. In order to ensure positivity, one
can regularize this definition in terms of two-Rényi relative
entropies, as shown in Refs. [40,41]. However, on the class of
states of interest for the present investigation, nonregularized
two-Rényi mutual information is always positive definite.
Moreover, as already mentioned, in the paradigmatic case of
the exactly solvable one-dimensional quantum XY model, we
will also make direct comparison with the von Neumann-based
mutual information, finding complete agreement. Finally,
the clustering property and other general properties of the
two-Rényi mutual information that are at the core of our
investigation and that we will prove below can be proven
without too much effort to hold valid also for the regularized
versions. Therefore, in the following, also in order to avoid
unnecessary formal mathematical complications, we will
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consider only the nonregularized version of the two-Rényi
mutual information.

By adopting such a strategy, we will obtain the following
main result: in the ordered phase corresponding to the
spontaneous breaking of some symmetry of a many-body
Hamiltonian with nonvanishing local order parameter, the mu-
tual information between two arbitrarily selected subsystems A

and B separated by a distance d(A,B) reaches its maximum in
the symmetry-preserving ground states and is upper bounded
by exp{−O[d(A,B)]} in the maximally symmetry-breaking
ground states, i.e., the ground states that maximize the order
parameter.

Therefore, we establish rigorously that—at least for some
finite range of values within the phase—spontaneous symme-
try breaking corresponds to the suppression of macroscopic
coherent superpositions, and symmetry-breaking ground states
are the ones selected in the real world by environmental
decoherence, in complete analogy with pointer states. In the
following, we focus specifically on the class of global Z2

symmetry. In particular, we will consider the specific, but
paradigmatic, example of the quantum XY models, and we will
show that macroscopic entanglement survives until a quantum
phase transition occurs. However, the central elements of this
result hold in general and the remaining ones can be easily
adapted to every instance of spontaneous symmetry breaking
for different Hamiltonians and different classes of symmetry
groups.

II. CLUSTERING OF TWO-RÉNYI ENTROPY
AND LONG-RANGE ORDER

Macroscopic long-range total correlations are revealed by
a nonvanishing mutual information I between two arbitrary
regions A and B separated by arbitrarily large distances. If I
vanishes when A and B are separated by a distance larger than
what defines the macroscopic interaction scale, then we are
assured that there is no macroscopic entanglement.

Let us first consider the case of fully factorized ground
states. These states are realized at a precise and unique
set of values of the Hamiltonian parameters in an ordered
phase, the so-called factorization point or, in spin systems,
the factorizing field, first discovered in Ref. [32]. The general
theory of ground-state factorization in terms of the response
to local unitary perturbations was fully developed much later,
in Refs. [33–35]. Factorized ground states can only occur in
an ordered phase of strongly interacting many-body systems.
Indeed, they are always maximally symmetry-breaking ground
states with degeneracy equal to the dimension of the symmetry
group, and, being fully product states, they have a trivially
vanishing mutual information I. Remarkably, at the factor-
ization point, all other ground states can always be expressed
as coherent linear superpositions of the fully factorized and
maximally symmetry-breaking ground states [42]. Then, by
construction, symmetric ground states feature a nonvanishing
I, no matter how large the distance d(A,B) between the
A and B regions. Moreover, there are no further types of
entanglement and quantum correlations involved. Therefore,
the classicality of symmetry-breaking states is immediately
verified at the factorization point.

As the Hamiltonian parameters are changed adiabatically
and move away from the factorization point, ground-state
entanglement does not come solely from the macroscopic
superposition of disconnected sectors, but also from the fact
that fully factorized states are no longer ground states. They
can be represented as U (s)|0〉⊗N,U (s)|1〉⊗N , where U (s) is the
unitary operator that connects the instantaneous ground states
of the Hamiltonian H (s). The operator U (s) is an entangling
operator, showing that the symmetry-breaking ground states
are now entangled. This raises the problem whether they are
still only locally entangled or if they have developed some
macroscopic entanglement. Similarly, for the symmetric states
will be U (s)�±, it is not immediately obvious to what extent
their entanglement is macroscopic or not for a generic value
of s. In the following, we show that the entanglement and
the correlations due to the adiabatic continuation U (s) are
local, i.e., they vanish in the limit of arbitrarily large spatial
separations d(A,B).

In order to proceed, we need to discriminate clearly between
the macroscopic and the local contributions to I. We first
recall that by S2(A) we mean the quantity S2(A) = − log2 QA

where QA is the purity defined as QA = Tr[ρ2
A], and ρA is

the reduced density matrix from the ground state of the total
system to the subsystem contained in the finite region A. To
compute the Rényi entropy of order 2 we will use the identity
QA := Trρ2

A = Tr(SAρ⊗2), where ρ⊗2 represents two copies
of the original full state on the doubled Hilbert space H ⊗ H′.
The operatorSA is the permutation operator (swap operator) of
order 2 with support onHAA′ only:SA = S̃A ⊗ IĀ where S̃A =
⊗a∈AS̃a and Sa is the permutation operator on the ath spin
of the system, i.e.,Sa|i1, . . . ia, . . . ,in〉 ⊗ |j1, . . . ja, . . . ,jn〉 =
|i1, . . . ja, . . . ,in〉 ⊗ |j1, . . . ia, . . . ,jn〉.

Next, we exploit a locality result, stemming essentially
from the Lieb-Robinson bound [43]. Indeed, for the mutual
information based on the von Neumann entropy, a recent
seminal contribution has shown that I(A|B) is an upper bound
for the two-point correlation functions and a lower bound to
exponentially decreasing functions of the ratio between the
d(A,B) and the correlation length [44].

Following Hastings and Wen [45], let us consider a many-
body Hamiltonian sum of local terms, H (s) = ∑

i hi(s), with
a finite gap �E above the low-energy sector for some finite
interval of values of the Hamiltonian parameters s (then, out of
this interval a quantum phase transition may occur). Moreover,
the local operators are assumed to be bounded: ‖hi(s)‖ < ∞.
If the ground state of H (s) is known for a particular fixed
set of values of the Hamiltonian parameters, say s0, we may
obtain it for any other generic set s by the quasiadiabatic
continuation U (s) induced by a continuous deformation of
H (s). A local operator OA with support on A transforms as
OA(s) = U †(s)OAU (s). The new operator OA(s) has support
on the whole Hilbert space. Nevertheless, the locality result
implies that we can arbitrarily approximate it with an operator
OA′(s) that has support only over the Hilbert space associated
to a region with diameter diam(A′) = diam(A) + l, as long
as l is larger than the correlation length ξ induced by the
gap �E, and by this making an error bounded in this way:
‖OA(s) − OA′(s)‖ � Ke−l/ξ . The constant K grows like lD

where D is the spatial dimension (e.g., the lattice dimension
for localized spins).
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Let now ρ be the ground state of the system for s = s0. The
purity of the restriction of the evolved state ρ(s) to a spatial
region C reads

QC(s) = Tr{U (s)⊗2ρ⊗2[U †(s)]⊗2SC}
= Tr{ρ⊗2[U †(s)]⊗2SCU (s)⊗2}
	 Tr[ρ⊗2SC+l(s)]. (4)

Here SC+l denotes the permutation operator with support on
spins that are at most at distance l from C, and the 	 sign means
that the error is exponentially small in l/ξ . If the subsystem C

is the union of disjoint and macroscopically separated subsets,
C = A ∪ B, we have

QC = Tr{ρ⊗2[U †(s)]⊗2SASBU (s)⊗2}
= Tr[ρ⊗2SA+l(s)SB+l(s)]. (5)

If the distance separating A and B is much larger than l, i.e.,
d(A,B) � l, we can write

QC 	 Tr[ρ⊗2SA+l(s) ⊗ SB+l(s) ⊗ IE], (6)

where E is the complement to A and B together (see Fig. 1).
Assume first that the initial state at s = s0 is one of the
completely factorized ground states (which, we recall, are also
maximally symmetry-breaking ground states). In this case,
ρ(s0) = ρA ⊗ ρB ⊗ ρE and we obtain

QC 	 Tr[ρ⊗2SA+l(s)]Tr[ρ⊗2SB+l(s)]. (7)

Therefore, the purity in the region C = A ∪ B is the product of
the purities in the two separated regions A and B from which
it follows immediately that I2(A|B) 	 0.

Let us next consider the opposite case in which the ground
state for s = s0 is a macroscopic coherent superposition
(Schrödinger cat) of the fully factorized ground states. We
show that any such superposition leads to a nonvanishing
I2(A|B). Since we need to consider two copies of the
ground state, we will label the factorized states by |a〉 and
|b〉, respectively, on each copy. So, we can write |a〉 =
|a〉A ⊗ |a〉B ⊗ |a〉E and similarly for |b〉. Therefore, |ρ〉⊗2 =∑

a,b αaαb|a〉A|a〉B |a〉E ⊗ |b〉A|b〉B |b〉E , where
∑

a |αa|2 =∑
b |αb|2 = 1. For the sake of an explicit evaluation, consider

the case of a doubly degenerate ground-state manifold and
subsystems A and B with equal size (number of spins). For
symmetric superpositions we then obtain

I2(A|B) 	 log2 4 − 2 log2

∑
aba′b′

〈a′b′|SA+l(s)|ab〉

+ log2

∑
aba′b′

〈a′b′|SA+l(s)|ab〉2

= log2 4 + log2

∑
aba′b′ 〈a′b′|SA+l(s)|ab〉2(∑
aba′b′ 〈a′b′|SA+l(s)|ab〉)2 . (8)

Since for s = 0 the expectation values of 〈a′b′|SA(0)|ab〉 are
positive definite, by continuity they are still positive for a small
enough value of s. So we see that, for small s, the second term
in Eq. (8) is negative but that theI2(A|B) stays strictly positive,
for arbitrary d(A,B). This is also true for any nontrivial
superposition of the symmetry-breaking sectors given by the

amplitudes αa , so that only the maximally symmetry-breaking
ones have exactly zero I2(A|B) [as d(A,B) → ∞].

In the following, we determine the exact value of I2(A|B)
for macroscopic coherent superpositions with arbitrarily large
d(A,B) in the entire ordered phase, beyond the perturbative
case of small s in the case in which A and B are made
by a single spin. We prove this result explicitly for models
with Z2 symmetry, but the central elements of the proof are
valid for arbitrary symmetry groups and arbitrary dimension
of A and B. In fact, our proof implies that for a maximally
symmetry-broken ground state all the correlation functions
between two very far subsystems factorize in the product of
the expectation value of the local operators. And this implies
that the mutual information between A and B must vanish.
When we turn to consider symmetric ground states, some of
these local expectation values must vanish because the local
operator does not commute with at least one of the parity
operators that define the symmetry group of the Hamiltonian.
As result the mutual information is expected to be different
from zero. A comprehensive analysis on the dependence on
the size of the subsystems and/or the symmetry group of the
Hamiltonian is in progress [46].

III. LONG-RANGE MUTUAL INFORMATION
IN MODELS WITH Z2 SYMMETRY

In the following, we focus on spin-1/2 systems with a global
Z2 symmetry, thus described by Hamiltonians that commute
with the parity operator along a fixed spin direction, i.e.,
Pμ = ⊗iσ

μ

i . In such systems spontaneous symmetry breaking
is associated to the presence of a twofold degenerate ground
state and an of-diagonal long-range order along a spin direction
σ ν

i that is orthogonal to σ
μ

i . We show that throughout the entire
ordered phase the long-range mutual information vanishes
identically on states that maximally break the symmetry,
while it remains strictly positive on any macroscopic coherent
superposition of the two broken symmetry sectors. For the
sake of simplicity we focus on the case in which subsystems
A and B are each made by a single spin but the results can be
extended straightforwardly to more general choices.

The two orthogonal symmetric ground states |e〉 and |o〉
(respectively, the even-symmetric and the odd-symmetric
ground states) form a convenient basis that allows us to write
all other ground states |g〉 in the ordered phase as their linear
superpositions: |g(u,v)〉 = u|e〉 + v|o〉. The reduced density
matrix ρC of the two-spin block C = A ∪ B can be expressed
in terms of the two-point correlation functions as follows [9]:

ρC(u,v) = 1

4

∑
iA,iB

GiA,iB (u,v)σ iA
A σ

iB
B , (9)

where the expectations GiA,iB (u,v)=〈g(u,v)|σ iA
Aσ

iB
B |g(u,v)〉

are on products of Pauli matrices σ
iA
A and σ

iB
B . As shown

in Ref. [8], all correlation functions can be associated to
spin operators that either commute or anticommute with the
parity operator Pμ. Therefore, the reduced density matrix
ρC(u,v) can be expressed as the sum of a symmetric part that
coincides with the density matrix of the symmetric ground
state, ρ

(s)
C (u,v), and an antisymmetric part, that is a traceless

matrix, ρ
(a)
C (u,v). Taking into account the fact that the two
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symmetric ground states fall in two orthogonal eigenspaces
of the parity, it is straightforward to verify that ρ

(s)
C (u,v)

is independent of the superposition amplitudes and hence
ρ

(s)
C (u,v) ≡ ρ

(s)
C .

The reduced density matrix of a symmetric ground state
thus reads

ρ
(s)
C = 1

4

[
1 + mμ

(
σ

μ

A + σ
μ

B

) + m2
μσ

μ

A σ
μ

B + m2
νσ

ν
Aσ ν

B

]
. (10)

In Eq. (10) mμ is the expectation value of the local operator
that commutes with the parity while mν is the local order
parameter. Exploiting Eq. (10) one can derive the mutual
information I (s)

2 and evaluate its asymptotic expression for
d(A,B) → ∞:

I (s)
2 (∞) = log2

[
1 + m4

ν(
1 + m2

μ

)2

]
. (11)

As mν �= 0 throughout the entire ordered phase, the above
relation shows the presence of macroscopic entanglement and
correlations in the symmetric coherent superposition ground
states throughout the entire phase. Up to this point, this result
is valid for any model with Z2 symmetry. The actual values of
mν of course depend on the specific model considered. Here,
we analytically compute the result for the quantum XY model.

The one-dimensional spin-1/2 quantum XY Hamiltonian
with ferromagnetic nearest-neighbor interactions in a trans-
verse field with periodic boundary conditions reads

H = −
N∑

i=1

[(
1 + γ

2

)
σx

i σ x
i+1 +

(
1 − γ

2

)
σ

y

i σ
y

i+1 + hσ z
i

]
,

(12)

where σ
μ

i ,μ = x,y,z, are the Pauli spin-1/2 operators acting
on site i,γ is the anisotropy parameter in the xy plane, h is
the transverse magnetic field along the z direction, and the
periodic boundary conditions σ

μ

N+1 ≡σ
μ

1 ensure invariance of
the model Hamiltonian under spatial translations.

Such a model can be solved analytically [6,47,48] and,
hence, the phase diagram can be determined exactly and
in great detail. In the thermodynamic limit, for any γ ∈
(0,1], a quantum phase transition occurs at the critical value
hc = 1 of the transverse field. For h<hc =1 the system is
ferromagnetically ordered and is characterized by a twofold
ground-state degeneracy such that the Z2 parity symmetry
under inversions along the spin-z direction is broken by some
elements of the ground space. Using the analytical solution,
in Fig. 2 we have plotted the behavior of I (s)

2 (∞) in the
ferromagnetic phase.

Given the two symmetric ground states, the so-called even
|e〉 and odd |o〉 states belonging to the two orthogonal sub-
spaces associated to the two possible distinct eigenvalues of the
parity operator, any symmetry-breaking linear superposition of
the form

|g(u,v)〉 = u|e〉 + v|o〉 (13)

is also an admissible ground state, with the complex superpo-
sition amplitudes u and v constrained by the normalization
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FIG. 2. Behavior of the mutual information [I (s)
2 (∞)] between

two spins at infinite distance in the symmetric ground state of the
one-dimensional XY model (thermodynamic limit) as a function of
the anisotropy γ and transverse field h in the ferromagnetic phase
0 � h � hc = 1. Within the ferromagnetic phase, it is always mν > 0,
and hence I (s)

2 (∞) > 0. On the other hand, mν = 0 either at hc = 1
or at γ = 0. Only at these points I (s)

2 (∞) = 0.

condition |u|2+|v|2 =1. Taking into account that the even
and odd ground states are orthogonal, the expectation values
of operators that commute with the parity operator are
independent of the superposition amplitudes u and v. On
the other hand, spin operators that do not commute with the
parity may have nonvanishing expectation values on such
linear combinations and hence break the symmetry of the
Hamiltonian Eq. (12).

In the asymptotic macroscopic regime d(A,B) → ∞, the
general two-spin reduced density matrix for an arbitrary
ground state reads

ρC(u,v) = ρ
(s)
C + 1

4 (uv∗ + vu∗)
[
mν

(
σ ν

A + σ ν
B

)
+mμmν

(
σ

μ

A σ ν
B + σ ν

Aσ ν
B

)]
. (14)

The corresponding expression for the mutual information
I2(∞) reads

I2(∞) = log2

{
1 + m4

ν[1 − (uv∗ + vu∗)4][
1 + m2

μ + (uv∗ + vu∗)2m2
ν

]2

}
. (15)

Due to the normalization constraint, |u|2 + |v|2 = 1, the
fraction in Eq. (15) is semipositive defined and vanishes
only either at mν = 0, i.e., in the disordered classical para-
magnetic phase, or when (uv∗ + vu∗) = 1. Therefore, in the
ordered phase the only ground states with vanishing long-
range mutual information, and hence vanishing macroscopic
entanglement and correlations, are the maximally symmetry-
breaking ground states. At the other end of the spectrum, it
is easy to verify that the maximum of I2, for a fixed value of
the parameters mμ and mν , is always achieved in the totally
symmetric (even) and antisymmetric (odd) states, the absolute
maximum being obtained for mμ = 0 and mν = 1. Finally,
since the one-dimensional XY model allows for the exact
evaluation of all entropies in the Rényi hierarchy, in Fig. 3
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FIG. 3. Behavior of the mutual information based on the two-
Rényi entropy, I2(A|B) (left), and the von Neumann entropy,
I(A|B) (right), as functions of the logarithm of the interspin
distance r for different superpositions in the ferromagnetic phase
of the one-dimensional XY model at (γ = h = 0.5). Black circles,
u = 1,v = 0 (symmetric state); red squares, u = cos(0.05π ),v =
sin(0.05π ); green diamonds, u = cos(0.1π ),v = sin(0.1π ); brown
up-triangles, u = cos(0.15π ),v = sin(0.15π ); blue down-triangles,
u = cos(0.2π ),v = sin(0.2π ); and violet empty circles, u =
cos(0.25π ),v = sin(0.25π ) (maximally symmetry-breaking ground
state). The two definitions feature the same qualitative behavior; in
particular, they both vanish in and only in the maximally symmetry-
breaking ground states.

we compare the mutual information based on the two-Rényi
and the one based on the von Neumann entropy, finding
complete qualitative and quantitative agreement. In particular,
they both vanish in, and only in, the maximally symmetry-
breaking ground states. Finally, using the parametrization
u = cos θ,v = sin θ , in Fig. 4 we also report and compare
for completeness the behavior of the two-Rényi based and
the von Neumann based mutual information as functions
of the superposition parameter θ for the two extreme cases
of nearest-neighbor distance r = 1 and asymptotic distance
r = ∞, finding again perfect agreement.
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FIG. 4. Behavior of the mutual information based on the two-
Rényi entropy, I2(A|B) (left), and the von Neumann entropy, I(A|B)
(right), as functions of the ground-state superposition parameter θ ,
with the parametrization u = cos θ,v = sin θ , for two extreme values
of the distance r between A and B. Dashed black curve: r = 1.
Solid red curve: r = ∞. The absolute minimum is always realized at
θ = π/4, corresponding to the maximally symmetry-breaking ground
state. At this point, both measures of mutual information vanish
exactly for r = ∞.

IV. COMPARISON WITH OTHER INDICATORS OF
MACROSCOPIC COHERENT SUPERPOSITIONS

Quantum discord [31,49] is a measure of quantum correla-
tions more general than entanglement that may exist in mixed
quantum states, including separable ones. It is defined as the
difference between mutual information—which accounts for
all correlations, both classical and quantum—and the optimal
classical correlations between A and B, by maximizing
over all the measurement on B: CAB = max{B̂k}[S(ρ̂A) −
SC(ρ̂AB |{B̂k})]. It is therefore sensible to verify whether it
may be a good quantifier of macroscopic quantum coherence.
The long-range pairwise quantum discord between two spins
in the ground state of the one-dimensional XY chain has been
recently investigated in Refs. [8,12–14]. It turns out that such
a quantity features a long-range behavior quite analogous to
that of the mutual information, with the crucial difference that
it vanishes identically in all possible ground states as mμ → 0.
From a mathematical point of view this can be easily explained
considering that, in such a case, the two-spin reduced density
matrix in the symmetric ground states at asymptotically large
interspin distance is indistinguishable from the one obtained
by the symmetry-breaking Gibbs states at zero temperature.

The localizable entanglement in a many-body pure state
is defined as the maximal amount of pairwise entanglement
between two spins i,j at arbitrary distance that can be achieved,
on average, by performing generalized measurements on all
other spins [50,51]. This naturally defines an entanglement
length χ that diverges in symmetric states. Numerics show that
in the maximally symmetry-breaking ground states of the XY

chain the localizable entanglement behaves like the connected
spin-spin correlation functions Qxx that are bound to decay
exponentially at long distance. Therefore long-range pairwise
entanglement defined via the localizable entanglement features
a behavior quite similar to that of the mutual information.
However, this is just pairwise entanglement (although at
long distance), so it does not quite capture the notion of a
macroscopic superposition. Moreover, the mutual information
is more readily generalized to thermal mixed states, the Gibbs
states at finite temperature, for which the evaluation of the
mutual information presents no particular difficulty.

V. CONCLUSIONS AND OUTLOOK

We investigated macroscopic entanglement [52] through
the behavior of the quantum mutual information between two
macroscopically separated blocks of dynamical variables in
the ground state of many-body systems featuring spontaneous
symmetry breaking. This quantity detects macroscopic total
correlations, including entanglement. The main result of this
paper is that in the entire phase with broken symmetry
the symmetry-breaking states have vanishing long-distance
mutual information, while the latter remains finite for any
nonmaximally symmetry-breaking superposition, attaining a
maximum for the totally symmetric states. This fact is easy
to prove when considering symmetry-breaking states that
are completely unentangled (fully factorized), the symmetric
superpositions of which are Greenberger-Horne-Zeilinger
states. In order to prove this feature in the entire ordered
phase, a much more challenging task, we followed a strategy
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based on two ingredients: (i) adopting measures of mutual
information based on the two-Rényi and on the von Neumann
entropies and (ii) exploiting locality results about quasiadi-
abatic continuation of quantum states derived by using the
Lieb-Robinson bounds [43,53,54]. In this way we were able to
prove that spontaneous symmetry breaking selects the many-
body states with vanishing long-distance mutual information,
and thus macroscopically least entangled, and therefore most
classical.

In perspective, we are concerned with the investigation of
several open problems. In particular, it would be interesting
to extend our analysis to the case of subsystems of arbitrarily
variable size, in order to observe possible threshold effects,
and to generic classes of symmetry groups [46]. Moreover,
we are interested in studying the case of globally mixed states
[24] and, in particular, equilibrium thermal states of models
featuring spontaneous symmetry breaking below a critical tem-
perature. At thermal equilibrium the system will be described
by the Gibbs state ρeq = Z−1 ∑

i,a e−βEi |Ei〉〈Ei |a , where with
a we have explicitly labeled different sectors. Below a critical
temperature Tc, if a labels the sectors with broken symmetry,
spontaneous symmetry breaking means that in every single
realization the label a will be fixed by the initial conditions.
Therefore, our statement is that Gibbs states obtained by
fixing a feature the least long-range mutual information com-
pared to all other nonmaximally symmetry-breaking Gibbs
states [46].

From a different perspective, we remark that many-body
localization has recently become a subject of great interest
for the condensed-matter community. Systems with strong
disorder featuring many-body localization fail to thermalize
and to obey the eigenstate thermalization hypothesis [55],
because their eigenstates are more weakly entangled than
in typical nonintegrable systems. It would be interesting to
see how the techniques developed in the present work might
help in providing rigorous results regarding the clustering of
mutual information in such systems. In fact, our techniques
can be used to investigate also systems that involve long-
range entanglement and correlations, such as topologically
ordered states [56,57] and their resilience in the presence of
perturbations or at finite temperature [26,58,59].
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