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Abstract

Huang et al. (STOC 2018) introduced the fully online matching problem, a generalization
of the classic online bipartite matching problem in that it allows all vertices to arrive online
and considers general graphs. They showed that the ranking algorithm by Karp et al. (STOC
1990) is strictly better than 0.5-competitive and the problem is strictly harder than the online
bipartite matching problem in that no algorithms can be (1− 1/e)-competitive.

This paper pins down two tight competitive ratios of classic algorithms for the fully online
matching problem. For the fractional version of the problem, we show that a natural instan-
tiation of the water-filling algorithm is 2 −

√
2 ≈ 0.585-competitive, together with a matching

hardness result. Interestingly, our hardness result applies to arbitrary algorithms in the edge-
arrival models of the online matching problem, improving the state-of-art 1

1+ln 2 ≈ 0.5906 upper
bound. For integral algorithms, we show a tight competitive ratio of ≈ 0.567 for the ranking
algorithm on bipartite graphs, matching a hardness result by Huang et al. (STOC 2018).
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1 Introduction

Following the seminal work by Karp et al. [KVV90] that initiated the study of the Online Bipartite
Matching problem by proposing the Ranking algorithm, online matching problems have drawn a
lot of attentions in the online algorithm literature. These problems have found numerous real-life
applications, notably, in online advertising. They are also the driving-force behind many important
techniques for designing and analyzing online algorithms, including the randomized primal dual
technique by Devanur et al. [DJK13].

Recently, Huang et al. [HKT+18] proposed a generalization of the Online Bipartite Matching
problem called Fully Online Matching. The generalization considers general graphs and allows all
vertices to arrive online. It captures a much wider family of real-life scenarios, including the ride-
sharing problem. Concretely, consider an undirected graph G = (V,E). Each step is either the
arrival or the deadline of a vertex. At a vertex v’s arrival, all the edges between v and those that
arrive before v are revealed. At its deadline, on the other hand, the algorithm must irrevocably
either match it to an unmatched neighbor (if it is not matched already) or leave it unmatched. The
model assumes that all neighbors of a vertex v arrive before v’s deadline. This turns out to be a
natural condition when it comes to concrete scenarios such as ride-sharing.

Further, Huang et al. [HKT+18] showed that the Fully Online Matching problem is quite in-
triguing from an algorithmic viewpoint in that 1) it takes a number of novel ideas to show that the
Ranking algorithm by Karp et al. [KVV90] is strictly better than 0.5-competitive even in the fully
online setting, and 2) the fully online setting, even on bipartite graphs, is strictly harder than the
original Online Bipartite Matching problem in that no algorithms can be 1−1/e ≈ 0.632-competitive.

1.1 Our Contributions and Techniques.

We develop better understandings on the Fully Online Matching problem by establishing two tight
competitive ratios. The first result considers the fractional version of the problem, where we are
allowed to fractionally match each vertex to multiple neighbors so long as the total mass sum to
at most one. We show that the Water-Filling algorithm, which at each vertex’s deadline matches
its unmatched portion fractionally to all neighbors with smallest matched portion (i.e., the lowest
water-level), gets a competitive ratio of 2 −

√
2 ≈ 0.585. We also construct a matching hard

instance for Water-Filling. The hardness result applies to arbitrary algorithms if we consider edge
arrival models [BST17], even when preemptions are allowed [ELSW13, McG05], improving the best
known bounds in these models. The second result focuses on the integral problem and the Ranking
algorithm. We prove that its competitive ratio is exactly the Ω constant1 ≈ 0.567 on bipartite
graphs, improving the previous bound of ≈ 0.554 and matching the previous hardness result by
Huang et al. [HKT+18]. See Figure 1 for where our results sit compared with the previous works.

Competitive Analysis of Water-Filling. The analysis of the Water-Filling algorithm is the
relatively easy part of the paper. We follow the online primal dual framework by Buchbinder et
al. [BJN07], building on the notions of passive and active vertices by Huang et al. [HKT+18].

When a vertex u matches another vertex v at u’s deadline, Huang et al. [HKT+18] referred to u
as the active vertex and v as the passive vertex. Intuitively, when edge (u, v) is of concern, v plays
a role similar to an offline vertex in the Online Bipartite Matching problem since it sits back and
allows u to make the matching decision, while u plays a role similar to an online vertex. Following
the same principle, for every vertex v, we refer to the portion that is matched before its deadline
as the passive portion, and the portion that is matched at its deadline as the active portion.

1This is the solution of Ω · eΩ = 1.
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Figure 1: A comparison of the results in this paper and those in previous work. LB means lower
bound (algorithmic results), and UB means upper bound (hardness results).

When a small portion p of edge (u, v) is chosen into the fractional matching, we shall split the
gain of p between the endpoints according to the current water-level xv of the passive vertex v
(i.e., the one with a later deadline). For some function g to be chosen in the analysis, u shall get(
1− g(xv)

)
· p while v shall get g(xv) · p. Then, by an appropriate argument, we can lower bound

the total gain of u and v by:∫ pu

0
g(x)dx+

(
1− pu

)(
1− g(xv)

)
+

∫ xv

0
g(x)dx. (1)

Here, pu is the passive portion of u, and xv is the passive portion of v after u’s deadline. The first
term is the gain of u due to its passive portion. The second term lower bounds the gain of u due
to its active portion. The third term lower bounds of the gain of v due to its passive portion.

It remains to choose g to maximize the above lower bound against the worst pu and xv. Unlike
in the primal dual analysis of some other online matching problems, this is not exactly a standard
ODE. Nonetheless, we observe that it is almost symmetric w.r.t. pu and xv. Indeed, choosing g to
be an appropriate linear function makes it symmetric and yields the optimal 2−

√
2 bound.

Matching Hardness for Water-Filling. Constructing a hard instance to show a matching 2−
√

2
upper bound on the competitive ratio of Water-Filling presents some technical obstacles beyond the
existing techniques. The construction is driven by Eqn. (1). By our choice of g, Eqn. (1) is equal
to the lower bound 2 −

√
2 only if pu and xv sum to precisely 2 −

√
2. Further, the performance

of the algorithm is equal to the gain of the endpoints summing over all edges in the optimal
matching in hindsight. Therefore, a matching hard instance must satisfy that before the matching
decision is made for an edge (u, v) in the optimal matching, the water-levels of the two endpoints
are prepared in advance so that the sum equals 2 −

√
2. This suggests that a tight instance for

Water-Filling must look very different from the existing hard instances in the previous works (e.g.,
[KVV90, DJ12, HKT+18]), where for every edge (u, v) in the optimal matching, one of the two
endpoints simply shows up with zero water-level and a matching decision is made for the edge.2

2It is easy to show that one cannot maintain at all time that some vertices have 2−
√

2 water-level while the other
have 0 with the Water-Filling algorithm.
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Our construction prepares the water-level of the vertices via a dynamic as follows. It maintains
at all time a set of vertices with some number of vertices at each water-level x for 0 ≤ x ≤ 2−

√
2.

At each step, pick a vertex u with an appropriate water-level xu and let it be u’s deadline. Vertex
u connects to a subset of the vertices with water-level 2 −

√
2 − xu, among which one vertex v is

u’s partner in the optimal matching. After the step, u and v will be removed from the pool; new
vertices (with zero water-level) will arrive to refill the pool if needed. The matching decision of u
“pumps up” the water-level of all its neighbors to 2−

√
2− xu + ε. Some of them will serve as the

active endpoints with this water-level of some edges in the optimal matching; some of them will
serve as the passive counterparts; the water-level of the remaining will be further “pumped up” by
some vertex with water-level xu− ε. We show how to maintain such a dynamic so that, in the long
run, the endpoints of any edge in the optimal matching will have a total water-level close to 2−

√
2

when a matching decision is made for the edge.

Competitive Analysis of Ranking on Bipartite Graphs. We first explain why the previous
analysis of Huang et al. [HKT+18] is not tight on their hard instance. Consider an edge (u, v) in
the optimal matching where u has an earlier deadline. The previous analysis is tight only if there
is a threshold θ such that whenever v’s rank is larger than θ, u is matched and v is unmatched
and, more importantly, whenever v’s rank is smaller than θ, v is passively matched and u matches
to the same vertex as in the previous case. In the hard instance, however, u is v’s only neighbor.
Therefore, if u’s own rank is sufficiently large such that u matches actively, u and v will match each
other when v’s rank is smaller than θ. Taking this extra gain into account gives the optimal ratio
of ≈ 0.567 for the hard instance.

Of course, we cannot näıvely assume that one of the endpoints of any edge in the optimal
matching will have only one neighbor. The point is the previous approach that tries to characterize
the matching status of u and v using a single threshold of v cannot possibly capture the above extra
gain. We show that a good enough characterization in general takes three thresholds, a threshold
of u and two thresholds of v, one with u in the graph and one without. As a result, we get a new
lower bound on the total expected gain of the endpoints that is strictly better than the previous
one in all but a few bottleneck cases. Then, we design a different gain sharing function that focuses
on these bottleneck cases to obtain a tight analysis.

Finally, we remark that the three thresholds pin down when u and v match each other. Previous
works on online matching usually omit the gain from this case, which indeed happens with negligible
probability in the worst case of those models (with a recent exception of [HTWZ18]). Our analysis
shows it was just a lucky coincident that we do not need to consider the case when the endpoints
match each other in those problems. It becomes critical in a more general online matching model.

1.2 Other Related Works

Following Karp et al. [KVV90], a series of works study different variants of the problem, including
b-matching [KP00], adwords [MSVV07, BJN07, DJ12], vertex-weighted matching [AGKM11] and
the random arrival model [KMT11, MY11, HTWZ18]. Besides, the analysis of Ranking has been
simplified in a series of papers [GM08, BM08, DJK13].

The Water-Filling algorithm has been studied to tackle several versions of the Online Bipartite
Matching problems [BJN07, KP00]. Devanur et al. [DHK+13] considered the whole page optimiza-
tion problem and extended the Water-Filling algorithm to use a carefully designed “level function”
instead of a single water-level. Wang and Wong [WW15] considered an alternative model of On-
line Bipartite Matching that allows both sides of vertices to arrive online. They showed a 0.526-
competitive algorithm for a fractional version of the problem. Both analysis of [DHK+13, WW15]
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are based on the online primal dual framework by [BJN07]. This paper further illustrates the power
of this framework for studying online fractional matching problems.

The hardness result in this paper improves the bounds for the following online matching models.
In online preemptive matching [ELSW13, McG05], each edge arrives online and the algorithm must
immediately decide whether to add the edge to the matching and to dispose of previously selected
edges if needed. A harder edge-arrival model [BST17] forbids edge disposals. For both problems,
the best previous bound stands at 1

1+ln 2 ≈ 0.5906 [ELSW13].
Very recently, weighted variants of Fully Online Matching have been studied by [ABJS18, DS18],

both considering the “windowed” version of the problem, motivated by the ride-sharing applications.

2 Preliminaries

We study both the fractional and the integral versions of Fully Online Matching. When the under-
lying graph is bipartite, we refer to the problem as Fully Online Bipartite Matching. Consider the
following standard linear program formulation of the matching problem and its dual.

max :
∑

(u,v)∈E xuv min :
∑

u∈V αu

s.t.
∑

v:(u,v)∈E xuv ≤ 1 ∀u ∈ V s.t. αu + αv ≥ 1 ∀(u, v) ∈ E

xuv ≥ 0 ∀(u, v) ∈ E αu ≥ 0 ∀u ∈ V

Fractional Matching. In this setting, we may match edges fractionally. Let xuv ∈ [0, 1] be the
fraction of edge (u, v) in the matching. Assuming u has an earlier deadline than v, this variable
increases only at u’s deadline. We refer to it as Fully Online Fractional Matching and study the
classic Water-Filling algorithm (e.g., [BJN07]) in this setting. We give a formal definition of the
algorithm below, in which the dual variables are updated as well. Note that the dual variables are
used only in the analysis. We fix an increasing function g : [0, 1] → [0, 1] to be specified later and

use xu
def
=
∑

v:(u,v)∈E xuv to keep track of the water-level (i.e. total fractional mass) of u at all time.

Algorithm 1 The Water-Filling Algorithm

Initialize all xuv’s and αu’s to be zero.
When the deadline of vertex u is reached:

Let pu = xu be the water-level collected before u’s deadline. . pu: passive water-level of u.
Let N(u) be the set of neighbors of u whose deadlines are not reached.
while xu < 1 and minv∈N(u){xv} < 1 do

Allocate a dx amount to each xuv for v ∈ arg minv∈N(u){xv}.
If xuv increases by dx, increase αu and αv respectively by

dαu = (1− g(xv))dx and dαv = g(xv)dx.

We call the vertices in N(u) the available neighbors of u at u’s deadline. We further import
the notions of active and passive vertices from [HKT+18] and define them for both fractional and
integral algorithms.

Definition 2.1 (Active, Passive) For any edge (u, v) that is (fractionally) matched by an algo-
rithm at u’s deadline, we say that u is active and v is passive (w.r.t. edge (u, v)).
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Integral Matching. In this setting, xuv’s must have binary values. We will analyze the Ranking
algorithm in Section 4 when the underlying graph G is bipartite. Recall the definition of Ranking
and some important notions from [HKT+18].

Algorithm 2 The Ranking Algorithm [HKT+18]

(1) a vertex v arrives:
pick yv ∈ [0, 1) uniformly at random.

(2) a vertex v’s deadline is reached:
if v is unmatched,

let N(v) be the set of unmatched neighbors of v.
if N(v) = ∅, then v remains unmatched;
else match v to arg minu∈N(v){yu}.

Let M(~y) denote the matching produced when Ranking is run with ~y as the ranks.

Definition 2.2 (Marginal Rank [HKT+18]) For any u and any ranks ~y-u of other vertices, the
marginal rank θ of u w.r.t. ~y-u is the largest value such that u is passive in M(yu = θ-, ~y-u).

The following is a restatement of Lemma 2.5 from [HKT+18] when restricted to bipartite graphs.

Lemma 2.1 In a bipartite graph, if u is matched in ~y, then from M(~y) to M(~y-u), all neighbors
of u do not get better. Here, passive is better than active, which is in turns better than unmatched.
Conditioned on being passive, matching to a vertex with earlier deadline is better. Conditioned on
being active, matching to a vertex with smaller rank is better.

We set primal variables according to Ranking. The randomized primal dual technique [DJK13]
allows us to prove competitive ratio bounds through the following.

Lemma 2.2 ([HKT+18], Lemma 2.6) Ranking is F -competitive if we can set (non-negative)
dual variables such that 1)

∑
(u,v)∈E xuv =

∑
u∈V αu; and 2) E~y [αu + αv] ≥ F for all (u, v) ∈ E.

3 Tight Competitive Ratio of Water-Filling

In this section, we give a tight analysis on the competitive ratio of the Water-Filling algorithm for
the Fully Online Fractional Matching problem.

3.1 Lower Bound on the Competitive Ratio

We first prove that the competitive ratio of Water-Filling is at least 2−
√

2. Our approach is based
on a primal dual analysis.

Theorem 3.1 Water-Filling is (2−
√

2)-competitive.

Proof: Recall that we update the primal variables according to Water-Filling and dual variables
in a way that the dual objective always equals the primal objective. Using the standard primal
dual technique, in order to prove that Water-Filling is (2−

√
2)-competitive, it suffices to show that

αu + αv ≥ 2−
√

2 for all pairs of neighbors u and v.

Let g(x) =
√

2
2 x+ 1−

√
2

2 be the function we used for defining dual variables.

5



Fix any pair of neighbors u, v where u has an earlier deadline than v. Consider the moment right
after u’s deadline. It must be that either xu = 1 or xv = 1 (otherwise xu will further increase).
As v can only be matched passively, if xv = 1, we have

αu + αv ≥
∫ 1

0
g(x)dx = 1−

√
2

4
≥ 2−

√
2.

Now suppose xu = 1 and xv < 1. Then, we have αv =
∫ xv

0 g(x)dx. Next, consider the value of
αu. Before u’s deadline, we have αu =

∫ pu
0 g(x)dx (recall that pu is the passive water-level of u).

Since xu = 1, and the water-level of v after the deadline of u is xv < 1, at any moment when the
water-level of u is increased from pu to 1, the neighbor that u matches has a water-level at most
xv. Hence, we have

αu ≥
∫ pu

0
g(x)dx+

∫ 1

pu

(1− g(xv))dx =

∫ pu

0
g(x)dx+ (1− pu)(1− g(xv)).

Summing the lower bounds on the two dual variables and by the definition of g, we have

αu + αv ≥
∫ pu

0
g(x)dx+ (1− pu)(1− g(xv)) +

∫ xv

0
g(x)dx

=

√
2

4
(p2
u + x2

v) + (1−
√

2

2
)(pu + xv) + (1− pu)(

√
2

2
−
√

2

2
xv)

=

√
2

4

(
(pu + xv)− (2−

√
2)
)2

+ 2−
√

2 ≥ 2−
√

2.

Hence, in both cases we have αu + αv ≥ 2 −
√

2, which gives the 2 −
√

2 lower bound on the
competitive ratio of Water-Filling.

3.2 Upper Bound on the Competitive Ratio

In this section we explicitly construct a hard instance, for which Water-Filling gives a solution of
value (2−

√
2) · OPT.

Hard Instance. Let there be 2k · m vertices, which are partitioned into m groups of size 2k.
For all t ∈ [m], let the vertices in the t-th group be Ut ∪ Vt, where Ut = {ut,1, . . . , ut,k} and
Vt = {vt,1, . . . , vt,k}. Let h : [0, 1] → [0, 1] be a decreasing function3 (to be determined later) with
h(0) = 1 and h(1) = 0. There are two types of edges in the graph (refer to Figure 2):

Upper triangle edges between Ut and Vt: ∀t ∈ [m], i ∈ [k] and j ≥ i, (ut,i, vt,j) ∈ E;

h-induced edges between Ut and Ut+1: ∀t ∈ [m− 1], i ∈ [k] and j ≤ bk · h( i−1
k )c, (ut,i, ut+1,j) ∈ E.

u2,1

u2,2

u2,3

u2,4

u1,1

u1,2

u1,3

u1,4

v1,1

v1,2

v1,3

v1,4

Figure 2: Subgraph induced by Ut ∪ Vt ∪ Ut+1: illustrating example with t = 1 and k = 4

3When h(x) ≡ 1, our instance becomes the 1
1+ln 2

≈ 0.5906 hard instance by [ELSW13] for the edge arrival model.
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Finally, let the deadlines of the u vertices be reached first, following the lexicographical order
on (t, i). Then let the deadlines of the v vertices be reached, i.e., after the deadline of um,k.

4

It is easy to see that the hard instance is bipartite, where (U1 ∪ U3 ∪ . . . ) ∪ (V2 ∪ V4 ∪ . . . ) and
(U2∪U4∪ . . . )∪ (V1∪V3∪ . . . ) are the two sides of vertices. This graph admits a perfect matching,
in which ut,i matches vt,i for all t ∈ [m], i ∈ [k] and hence, OPT = km.

We first construct the function h and prove the following technical lemma. Let c = 2−
√

2, and
function f : [0, c]→ [0, 1] be defined as

f(x)
def
=

1

2
(ln(1− x) + ln(1− c+ x)) +

1√
2(x− 1)

+
2 +
√

2− ln(1− c)
2

.

Let τ(x)
def
= f−1(x) and h(x)

def
= f(c− f−1(x)). It is not difficult to see that f is strictly decreasing.

Hence, functions h : [0, 1] → [0, 1] and τ : [0, 1] → [0, c] are well defined. Moreover, since f(0) = 1
and f(c) = 0, we have that h is decreasing, h(0) = 1 and h(1) = 0, as required in the construction
of the hard instance. These functions might seem mysteries at this point, we will show a connection
between the functions h and g via duality in Appendix A, where g is the gain sharing function that
we used to define the dual variables in Water-Filling.

Lemma 3.1 For all x ∈ [0, 1] we have∫ x

0

1− τ(y)

1− y + h(y)
dy = c− τ(x),

∫ 1

0
τ(y)dy = 1− c and

∫ 1

0

1

1− y + h(y)
dy < 1.

Proof: First we show the first equation, i.e., for all x ∈ [0, 1] we have
∫ x

0
1−τ(y)

1−y+h(y)dy = c− τ(x).

Note that τ(0) = c and, thus, both sides equal 0 when x = 0. It suffices to check that for all x ∈ [0, 1],
1−τ(x)

1−x+h(x) = −τ ′(x). Let φ = τ(x) ∈ [0, c], we have f(φ) = x and h(x) = f(c− f−1(x)) = f(c− φ).
Then, we only need to check that

1− φ
1− f(φ) + f(c− φ)

= −τ ′(x) = − 1

f ′(φ)
,

which is true as f is defined such that for all φ ∈ [0, c],

1− f(φ) + f(c− φ) + (1− φ)f ′(φ) = 0.

Taking integration from 0 to c, the contributions of the 2nd and the 3rd terms cancel. We have

0 = c+

∫ c

0
(1− x)f ′(x)dx = c− 1 +

∫ c

0
f(x)dx,

which implies the second equation because
∫ 1

0 τ(y)dy =
∫ c

0 f(x)dx = 1− c, where the first equality
follows because τ = f−1, f is strictly decreasing, f(0) = 0, and f(c) = 0.

Now we prove the last equation, i.e.,
∫ 1

0
1

1−y+h(y)dy < 1.

Observe that both 1− τ(y) and 1
1−y+h(y) are increasing in terms of y. Hence we have

c = c− τ(1) =

∫ 1

0

1− τ(y)

1− y + h(y)
dy >

∫ 1

0
(1− τ(y))dy ·

∫ 1

0

1

1− y + h(y)
dy = c ·

∫ 1

0

1

1− y + h(y)
dy.

Dividing both sides by c proves the last equation.

Now we analyze the performance of Water-Filling on this instance. We first prove that by running
Water-Filling on the hard instance, the passive water-levels of almost all vertices are strictly smaller
than 1.

4The relative order of the deadlines of v vertices does not matter, as long as vt,i’s deadline is after ut,i’s deadline.
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Lemma 3.2 For large enough k, Water-Filling produces a fractional matching with put,i < 1 for all
t ∈ [m], i ∈ [k] and pvt,i < 1 for all t ∈ [m− 1], i ∈ [k].

Proof: Observe that at the deadline of each ut,i, where t ∈ [m − 1], it has |N(ut,i) ∩ Vt| +
|N(ut,i)∩Ut+1| = k− i+ 1 + bk · h( i−1

k )c neighbors whose deadlines are not reached. Moreover, as
h is decreasing, it is easy to see (by induction) that at the deadline of ut,i, all available neighbors
of ut,i have the same water-level. Hence, Water-Filling increases the water-level of the available
neighbors of ut,i at the same rate until minv∈N(ut,i) xv = 1 or xut,i = 1.

Since ut+1,1 is a neighbor of every vertex in Ut, we have put+1,1 = maxj∈[k]{put+1,j , pvt,j}. There-
fore, it suffices to show that put+1,1 is smaller than 1. Note that each vertex ut,i has at most 1 unit
of unmatched portion that is distributed among k − i + 1 + bk · h( i−1

k )c available neighbors and,
thus, it increases the water-level of ut+1,1 by at most 1

k−i+1+bk·h( i−1
k

)c . Hence, when k → ∞, we

have

put+1,1 ≤
k∑
i=1

1

k − i+ 1 + bk · h( i−1
k )c

→
∫ 1

0

1

1− y + h(y)
dy < 1,

where the last inequality follows from Lemma 3.1. This finishes the proof.

Lemma 3.2 implies that, for large enough k, we can guarantee that when running Water-Filling
on the hard instance, after the deadline of every ut,i, where t ∈ [m− 1], we must have xut,i = 1, as
none of its neighbors with a later deadline has a water-level that reaches 1.

Corollary 1 For all t ∈ [m− 1], we have xut,i = 1 after ut,i’s deadline.

Now we are ready to prove the main theorem of this section.

Theorem 3.2 Water-Filling is at most (2−
√

2)-competitive.

Proof: Let pt = (put,1 , put,2 , . . . , put,k)T denote the passive water-level vector of Ut. Since the
increment of matching at ut,i’s deadline is at most 1− put,i , the solution given by Water-Filling is∑

(u,v)∈E

xuv ≤
∑
t,i

(1− put,i) =
∑
t

(k − ‖pt‖1).

Indeed, by Corollary 1, for all t ∈ [m−1], the increment of matching at ut,i’s deadline is exactly
1−put,i . Recall that in the hard instance, ut+1,i is a neighbor of ut,j iff i

k ≤ h( j−1
k ). Hence we have

put+1,i =

bk·h−1( i
k

)+1c∑
j=1

1− put,j
k − j + 1 + bk · h( j−1

k )c
=

bk·h−1( i
k

)+1c∑
j=1

(1− put,j ) · aj ,

where aj = 1
k−j+1+bk·h( j

k
)c

is independent of t. In other words, there exists a k × k matrix M such

that for all t ∈ [m− 1], pt+1 = M(1−pt). More precisely, we have Mi,j = aj if j ≤ bk ·h−1( ik ) + 1c,
Mi,j = 0 otherwise. Hence, for any i ∈ [k], by Lemma 3.1, we have∑

j∈[k]

Mi,j ≤
∑
j∈[k]

aj < 1.

That is, M is a contraction matrix and the above mapping from pt to pt+1 has a unique
stationary vector p∗, i.e. p∗ = M(1−p∗). Moreover, limt→∞ pt = p∗5. Thus, for any fixed k, when

5Observe that (pt+1 − p∗) = M(p∗ − pt) and M is a contraction matrix.
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m→∞, the ratio between the matching size of Water-Filling and the optimal is

lim
m→∞

∑
t(k − ‖pt‖1)

m
= 1− 1

k
· ‖p∗‖1.

Finally, we consider when k →∞ and calculate the stationary vector. In this case, p∗ becomes
a function p : [0, 1]→ [0, 1] and the linear equation p∗ = M(1− p∗) becomes the following∫ h−1(x)

0

1− p(y)

1− y + h(y)
dy = p(x), ∀x ∈ [0, 1].

We verify that p = τ is a solution to this system of equations by Lemma 3.1. For all x, we have∫ h−1(x)

0

1− τ(y)

1− y + h(y)
dy = c− τ(h−1(x)) = τ

(
f
(
c− τ(h−1(x))

))
= τ

(
h
(
h−1(x)

))
= τ(x).

Thus, the ratio between Water-Filling and OPT is 1−
∫ 1

0 τ(y)dy = c = 2−
√

2.

Interestingly, we show that our hardness result applies to the edge-arrival models of the online
matching problems. In the Online Edge Arrival Matching problem [BST17], at each step, an edge
arrives online and the algorithm must irrevocably decide whether to add the edge to the matching;
in the preemptive setting (Online Preemptive Matching [ELSW13, McG05]), instead, we are allowed
to dispose of edges in the matching before accepting a new edge.

Corollary 2 No algorithm can be better than (2−
√

2)-competitive for Online Edge Arrival Matching
and Online Preemptive Matching, even if fractional matching is allowed.

Proof: Since the edge arrival model (resp. integral matching) is strictly harder than the pre-
emptive model (resp. fractional matching), it suffices to consider the second model with fractional
matching. Consider the previous hard instance with the following modifications. The underly-
ing graph remains the same and each vertex is associated with the same deadline as before. At
ut,i’s deadline, its incident edges with available neighbors are revealed one by one. In this way,
all available neighbors of ut,i are indistinguishable at this moment, i.e. they share the same set
of neighbors. Thus by assigning random identities to these vertices, the available neighbors of ut,i
have the same expected increment in matched fraction. Moreover, since no edge incident to each
vertex comes after its deadline, it is not beneficial for an algorithm to dispose of previously chosen
edges. Therefore, no algorithm can do better than Water-Filling in expectation and the lower bound
2−
√

2 applies.

4 Tight Competitive Ratio of Ranking on Bipartite Graphs

Let Ω ≈ 0.5671 denote the Omega constant, which is the solution for the equation Ω·eΩ = 1. In this
section, we prove that Ranking is Ω-competitive for the Fully Online Bipartite Matching, matching
the Ω hardness result given by Huang et al. [HKT+18].

Theorem 4.1 Ranking is Ω-competitive for Fully Online Bipartite Matching.

We adopt the randomized primal dual analysis from [HKT+18]. Recall the dual assignment
that distributes the gain of each matched edge between its two endpoints as follows.

• Gain Sharing: Whenever a pair (u, v) is matched with u being active and v being passive,
let αu = 1− g(yv) and αv = g(yv), where g : [0, 1]→ [0, 1] is non-decreasing, and g(1) = 1.

9



By Lemma 2.2, it suffices to prove that E~y [αu + αv] ≥ Ω for all pairs of neighbors u, v. Suppose
u has an earlier deadline than v and ~y-v is the rank vector of all vertices excluding v. Let θ be the
marginal rank of v. The following lemma lies in the central of the proof by [HKT+18].

Fact 4.1 ([HKT+18], Lemma 3.2) For any arbitrarily fixed ~y-v, we have

Eyv [αu + αv] ≥ min
θ∈[0,1]

{∫ θ

0
g(yv)dyv + min {1− g(θ), g(yu)}

}
.

Our main technical contribution is an improved version of the above lower bound. Indeed,
using Fact 4.1 as a lower bound, one cannot achieve a competitive ratio greater than 0.56 by just
optimizing g.6 In the following, we will first illustrate how this lower bound can be improved for
the hard instance given in [HKT+18]. Then, we show in Section 4.2 how to prove the Ω competitive
ratio for general instances.

4.1 Better Competitive Ratio for the Hard Instance

Recall the following hard instance for Ranking that is given by [HKT+18]. In the instance (refer
to Figure 3), the vertices are organized into (infinitely many) groups of size 2k, where each group
Ut ∪Vt induces a perfect matching. For all t ∈ [m− 1], the vertices Ut and Ut+1 are connected by a
complete bipartite graph. The deadline of every ut,i is earlier than vt,i, and deadlines of ut,i follow
the lexicographic order on (t, i).

Prev Prev

ut,1

ut,2

ut,3

ut,4

vt,1

vt,2

vt,3

vt,4

Next Next

Figure 3: Hard instance of Ranking: illustrating example with k = 4.

It is shown in [HKT+18] that when running Ranking on the above instance, at the deadline of
the first vertex of each group, e.g., ut,1, the expected fraction of unmatched vertices in Ut (which
is also the competitive ratio of Ranking) is given by the equation x = e−x. In other words, the
competitive ratio of Ranking is Ω on the above instance (when k →∞).

In the following, we show that the competitive ratio of Ranking is Ω, using the randomized
primal dual framework, and explain what is missing in the previous analysis. Fix any pair of
neighbors u, v in the same group s.t. u has an earlier deadline than v. Next, we fix the ranks of
all vertices but v arbitrarily, and lower bound Eyv [αu + αv] for any edge (u, v) that appears in the
perfect matching7.

6The function g is not optimized in [HKT+18] with respect to their lower bound. However, the ratio is less than
0.56 with the optimal g function.

7Note that the competitive ratio equals
∑

u E [αu] =
∑

(u,v) appears in the perfect matching E [αu + αv].
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Observe that u is the only neighbor of v. If u is passive, then v is unmatched regardless of yv,
which implies Eyv [αu + αv] = g(yu). Otherwise, let θ be the marginal rank of v. By definition,
when yv > θ, u matches a vertex with rank θ and hence αu = 1−g(θ). For the case when yv < θ, it
is shown in [HKT+18] (using Lemma 2.1) that u does not get worse: u either is passive, or actively
matches a vertex with rank at most θ. That is, αu ≥ min{g(yu), 1− g(θ)} when yv < θ. However,
for the specific hard instance given in Figure 3, u is v’s only neighbor. Hence, u and v will match
each other when yv < θ. Therefore, we have

Eyv [αu + αv] =

∫ θ

0
(αu + αv)dyv +

∫ 1

θ
αudyv = θ + (1− θ) · (1− g(θ)).

Together with the case when u is passive, we have that

Eyv [αu + αv] ≥ f(yu)
def
= min

{
g(yu), min

θ∈[0,1]
{θ + (1− θ) · (1− g(θ))}

}
.

This bound is strictly stronger than Fact 4.1, as we fully characterize the gain of αu when yv
is smaller than its marginal rank, rather than the loose lower bound min{g(yu), 1 − g(θ)} given
in [HKT+18]. By taking expectation over yu and optimizing the function g(·) (see Section 4.2), the
above lower bound implies that Ranking is Ω-competitive on the hard instance.

In general, v does not necessarily match u when yv < θ. However, when this fails to happen,
we are able to retrieve extra gain of αv when u is passive. (Recall that in the hard instance, v
is unmatched when u is passive.) The complete analysis involves a more careful treatment that
considers the randomness of yu, yv at the same time, when deriving the lower bound.

4.2 Proof of Theorem 4.1

Consider any neighboring vertices u and v. In the following, we fix an arbitrary assignment of ranks
to all vertices but u, v. We denote this assignment of ranks by ~y-uv. Unless otherwise specified, we
use E [·] to denote the expectation taken over the randomness of yu and yv.

Instead of using a single threshold θ of v as in the previous analysis, we will make use of multiple
thresholds to give a good enough characterization of the matching status of u and v in order to
derive the tight competitive ratio. We introduce the first two below.

Definition 4.1 (τ and γ) Consider the graph G−{v} with v removed. Let τ be the marginal rank
of u w.r.t. ~y-uv. In other words, u is passive iff M(yu < τ, ~y-uv). Similarly, let γ be the marginal
rank of v w.r.t. ~y-uv in graph G− {u}, i.e., with u removed.

Lemma 4.1 E [αu · 1(yu < τ) + αv · 1(yv < γ)] =
∫ τ

0 g(yu)dyu +
∫ γ

0 g(yv)dyv

Proof: Consider yu = y < τ . By the definition of τ , we know that for all yv ∈ [0, 1], u is passive
in M(yu = y, yv, ~y-uv), because inserting v (with any rank) to the graph cannot make u worse (by
Lemma 2.1). Thus, for all yu < τ and yv ∈ [0, 1], we have αu = g(yu), which correspond to the first
term of the RHS. For the same reason, for all yu ∈ [0, 1], v is passive in M(yv < γ, yu, ~y-uv), which
gives αv = g(yv), and the second term of the RHS.

For all yu ∈ [0, 1], let θ(yu) be the marginal rank of v w.r.t. ~y-v = (yu, ~y-uv). Recall v is always
passive (regardless of yu) when yv < γ. Hence, we have θ(yu) ≥ γ for all yu ∈ [0, 1].

Lemma 4.2 For any fixed yu > τ , we have

Eyv [αu + αv · 1(yv > γ)] ≥ 1− γ − (1− θ(yu)) · g(θ(yu)) + γ ·min{g(yu), 1− g(θ(yu))}.
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Proof: By the definition of θ(yu), we know that when yv = θ(yu)+ (slightly larger than θ(yu)),
v is not passive. Thus, u must be matched. Moreover, u must be active. Otherwise u should
remain passive when v is removed, because the deadline of v is later than u, which contradicts the
definition of τ (recall that we fix some yu > τ). Hence, when yv = θ(yu)+, u actively matches some
vertex with rank at most θ(yu). As increasing the rank of v does not create any difference to the
final matching, for all yv > θ(yu), we have αu ≥ 1− g(θ(yu)).

Note that it is possible that θ(yu) = 1, i.e., v is passive for all rank yv ∈ [0, 1], in which case
the above lower bound still holds. Since the graph is bipartite, by Lemma 2.1, for all yv < θ(yu),
we have αu ≥ min{g(yu), 1− g(θ(yu))}.

Finally, we show that for any yv ∈ (γ, θ(yu)), we have αu +αv ≥ 1. Fix any yv ∈ (γ, θ(yu)). By
definition v is passive. Consider the first moment when one of u, v is matched.

Suppose at this moment, v is matched (passively) by some vertex z. Then, we show that z = u,
which gives αu + αv = 1. Otherwise, z must have an earlier deadline than u. Then, we know that
v remains passive with u removed, which contradicts the definition of γ.

Suppose at this moment, u is matched. Then we know that u must active, as otherwise u
remains passive with v removed, which contradicts the definition of τ . Suppose u matches some
vertex z. Since v is not matched at this moment, the rank of z is no more than yv, which implies
αu ≥ 1− g(yv) = 1− αv, as required.

To sum up, for any fixed yu > τ , we have

Eyv [αu + αv · 1(yv > γ)] ≥
∫ γ

0
αudyv +

∫ θ(yu)

γ
(αu + αv)dyv +

∫ 1

θ(yu)
αudyv

≥ γ ·min{g(yu), 1− g(θ(yu))}+ (θ(yu)− γ) + (1− θ(yu)) · (1− g(θ(yu)))

≥ 1− γ − (1− θ(yu)) · g(θ(yu)) + γ ·min{g(yu), 1− g(θ(yu))},

as claimed.

Combing the two lemmas, we have the following lower bound. Observe that the following bound
degrades to the one we derived for the hard instance in Subsection 4.1, when γ = 0.

Lemma 4.3 For any neighbor u of v that has an earlier deadline than v, and for any ~y-uv, we have

E [αu + αv] ≥ min
τ,0≤γ≤θ≤1

{∫ τ

0
g(yu)dyu +

∫ γ

0
g(yv)dyv + (1− τ)(1− γ − (1− θ) · g(θ))

+ γ ·
∫ 1

τ
min{1− g(θ), g(yu)}dyu

}

Proof: First, we show that there exists θ such that θ(yu) = θ for all yu > τ . Consider the graph
with v removed, and let yu = τ+. By the definition of τ , u is not passive.

1. If u is unmatched, then we know that after inserting v with any yv ∈ [0, 1], v is passive, as
otherwise u will be matched with v removed. Hence, we have θ(yu) = 1 for all yu > τ ;

2. Otherwise, u is active. Let θ = θ(τ+). Then, we know that v is not passive when inserted
to the graph with yv = θ+. Moreover, we know that u is active after the insertion: if u is
passive, then u remains passive with v removed, which contradicts the definition of τ . Since
increasing yu does not change the matching, we have θ(yu) ≤ θ for all yu > τ . On the other
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hand, when yv = θ- and yu = τ+, u is active and v is passive. Since increasing yu does not
change the matching, we have θ(yu) ≥ θ for all yu > τ . The sandwiching bounds imply that
θ(yu) = θ for all yu > τ .

Hence, combining Lemma 4.1 and 4.2, we have

E [αu + αv] ≥ E [αu · 1(yu < τ) + αv · 1(yv < γ)] +

∫ 1

τ
Eyv [αu + αv · 1(yv > γ)] dyu

=

∫ τ

0
g(yu)dyu +

∫ γ

0
g(yv)dyv +

∫ 1

τ

(
1− γ − (1− θ) · g(θ) + γ ·min{g(yu), 1− g(θ)}

)
dyu

=

∫ τ

0
g(yu)dyu +

∫ γ

0
g(yv)dyv + (1− τ) ·

(
1− γ − (1− θ) · g(θ)

)
+ γ ·

∫ 1

τ
min{g(yu), 1− g(θ)}dyu.

Taking minimum over τ and γ ≤ θ gives Lemma 4.3.

Proof of Theorem 4.1: Fix the non-decreasing function g as follows:

g(y) =


c

1−y , when y < 1−2c
1−c ,

1− c, when 1−2c
1−c ≤ y < 1,

1, when y = 1,

where c = 1
1+eΩ

≈ 0.3619. Let f(τ, γ, θ) denote the expression to be minimized on the RHS of
Lemma 4.3. Then, we have

f(τ, γ, θ) =

∫ τ

0
g(yu)dyu +

∫ γ

0
g(yv)dyv + (1− τ)

(
1− γ − (1− θ) · g(θ)

)
+ γ ·

∫ 1

τ
min{g(yu), 1− g(θ)}dyu.

Fix any γ and θ, and suppose g(τ) < 1− g(θ), then observe that

∂f(τ, γ, θ)

∂τ
= g(τ)− (1− γ − (1− θ) · g(θ))− γ ·min{g(τ), 1− g(θ)}

= (1− γ) · g(τ)− (1− γ) + (1− θ) · g(θ)

< (1− γ)(1− g(θ))− (1− γ) + (1− θ) · g(θ)

= (γ − θ) · g(θ) ≤ 0.

Here, the last inequality holds because we have θ ≥ γ by their definitions.
Thus, the minimum of f(τ, γ, θ) over τ ∈ [0, 1], 0 ≤ γ ≤ θ ≤ 1 must be obtained when

g(τ) ≥ 1− g(θ). As a result, we get that

f(τ, γ, θ) =

∫ τ

0
g(yu)dyu +

∫ γ

0
g(yv)dyv + (1− τ)

(
1− (1− θ + γ) · g(θ)

)
.

If we relax the constraint that θ ≥ γ, then the maximum of (1 − θ + γ)g(θ) is achieved when
θ∗ = 1−2c

1−c (for which g(θ∗) = 1− c). Note that the maximum is ( c
1−c + γ) · (1− c) = (1− c) · γ + c,

which is greater than the value of expression when θ = 1, i.e., γ. Thus, we have

f(τ, γ, θ) ≥ f(τ, γ, θ∗) =

∫ τ

0
g(yu)dyu +

∫ γ

0
g(yv)dyv + (1− τ) · (1− γ) · (1− c).
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It is easy to see that the minimum of f(τ, γ, θ∗) must be achieved when γ < θ∗ = 1−2c
1−c (for

which g(γ) < 1− c), as otherwise the partial derivative

∂f(τ, γ, θ∗)

∂γ
= g(γ)− (1− τ) · (1− c) ≥ 0.

Since f(τ, γ, θ∗) is symmetric for τ and γ, the same conclusion holds for τ , which means

f(τ, γ, θ∗) =

∫ τ

0

c

1− x
dx+

∫ γ

0

c

1− x
dx+ (1− τ) · (1− γ) · (1− c)

=− c ln(1− τ)− c ln(1− γ) + (1− τ) · (1− γ) · (1− c)

≥c− c · ln(
c

1− c
) =

1 + Ω

1 + eΩ
= Ω,

where the inequality comes from the fact that (take (1 − τ) · (1 − γ) as the variable) function
(1− c) · x− c · ln(x) achieves its minimum when x = c

1−c .
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A Primal-Dual Connection between the Upper and Lower Bounds

We provide an interesting primal-dual connection between the primal dual analysis in Section 3.1
and the hard instance in Section 3.2, which inspires us to find the correct h function in Section 3.2.

Recall the following lower bound established in the proof of Theorem 3.1,

αu + αv ≥ min

{∫ 1

0
g(x)dx, min

pu,xv
{
∫ pu

0
g(x)dx+ (1− pu)(1− g(xv)) +

∫ xv

0
g(x)dx}

}
.

We are left to optimize function g using the following linear program:

max
g

: r

s.t. r ≤
∫ x

0
g(y)dy +

∫ z

0
g(y)dy + (1− x)(1− g(z)), ∀x, z ∈ [0, 1].

After solving it, we remove redundant constraints with slacks and consider the following program:

(P ) max
g

: r

s.t. r ≤
∫ x

0
g(y)dy +

∫ c−x

0
g(y)dy + (1− x)(1− g(c− x)), ∀x ∈ [0, c],

where c = 2−
√

2. We know that the above two programs have the same optimal value. Moreover,
as the program suggests, in order to construct a tight hard instance, all pairs u, v matched in
OPT must satisfy pu + xv = c when Water-Filling is run8. According to the instance structure and
argument in Section 3.2, it suffices to find a function h : [0, 1]→ [0, 1] so that∫ x

0

1− τ(y)

1− y + h(y)
= τ(h(x)) = c− τ(x), ∀x ∈ [0, 1].

Here, τ : [0, 1] → [0, c] corresponds to the stationary water level and gives the first equation.
Moreover, the perfect partner corresponding to x also has water level τ(h(x)) and we require it to
be c− τ(x), which gives the second equation. Therefore, h(x) = τ−1(c− τ(x)). Let f(x) = τ−1(x)
and taking derivative over the above equation, it suffices to prove the existence of f, τ, h so that

1− τ(x)

1− x+ h(x)
= −τ ′(x)⇔ 1− φ

1− f(φ) + f(c− φ)
= − 1

f ′(φ)

⇔ 1− f(φ) + f(c− φ) + (1− φ)f ′(φ) = 0, ∀φ ∈ [0, c].

Now, consider the dual program of P :

min
q

:

∫ c

0
(1− x)q(x)dx

s.t. 1−
∫ c

0
q(x)dx ≤ 0,∫ x

0
q(y)dy +

∫ c

c−x
q(y)dy − (1− x)q(x) ≤ 0, ∀x ∈ [0, c].

According to primal dual theory, we know that the optimal dual solution q(x) satisfies
∫ c

0 q(x)dx = 1
and

∫ x
0 q(y)dy +

∫ c
c−x q(y)dy + (1− x)q(x) = 0. Let Q(x) = 1−

∫ x
0 q(y)dy =

∫ c
x q(y)dy, we have

1−Q(x) +Q(c− x) + (1− x)Q′(x) = 0, ∀x ∈ [0, c],

which is exactly the same equation we required for f .

8Constraints must be tight almost everywhere. As otherwise, our primal dual analysis proves the competitive
ratio of Water-Filling is strictly greater than c on the specific instance.

16


	1 Introduction
	1.1 Our Contributions and Techniques.
	1.2 Other Related Works

	2 Preliminaries
	3 Tight Competitive Ratio of Water-Filling
	3.1 Lower Bound on the Competitive Ratio
	3.2 Upper Bound on the Competitive Ratio

	4 Tight Competitive Ratio of Ranking on Bipartite Graphs
	4.1 Better Competitive Ratio for the Hard Instance
	4.2 Proof of Theorem ??

	A Primal-Dual Connection between the Upper and Lower Bounds

