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Dynamical Shiba states from precessing magnetic moments in an s-wave superconductor
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We study theoretically the dynamics of a Shiba state forming around precessing classical spin in an s-wave
superconductor. Utilizing a rotating wave description for the precessing magnetic impurity, we find the resulting
Shiba bound state quasienergy and the spatial extension of the Shiba wave function. We show that such a
precession pertains to dc charge and spin currents flowing through a normal STM tip tunnel coupled to the
superconductor in the vicinity of the impurity. We calculate these currents and find that they strongly depend
on the magnetic impurity precession frequency, precession angle, and on the position of the Shiba energy level
in the superconducting gap. The resulting charge current is found to be proportional to the difference between
the electron and hole wave functions of the Shiba state, being a direct measure for such an asymmetry. By
dynamically driving the impurity one can infer the spin dependence of the Shiba states in the absence of a
spin-polarized STM tip.
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I. INTRODUCTION

Magnetic impurities inserted in s-wave superconductors
can bind in-gap, spin-polarized electrons, in the so-called
localized Shiba states [1]. While these states have been pre-
dicted more than four decades ago [2–5], and experimentally
detected before the turn of the century [6], recently they have
been receiving lots of attention as they have been suggested
as building blocks for a topological superconductor. These
materials have the properties that they are insulating in the
bulk but can possess metallic surface states, depending if they
are in the so-called trivial (no surface states) or nontrivial
(with surface states) regime, similarly to the better known
topological insulators. The surface states of a topological
superconductor are Majorana fermions [7], exotic particles
that are their own antiparticles, and which have been promoted
as building blocks for a topological quantum computer. In
condensed matter systems they emerge as excitations in
p-wave superconductors (at the edges of the sample, or bound
to vortices) which, however, rarely exist in a natural form.
Instead, various implementations have been put forward, all
which rely on engineering such new states of matter. One
of the most viable ideas is to utilize magnetic impurities in
conventional s-wave superconductors [8–26] that give rise to
Shiba states which, if put in close proximity to each other can
form an electronic band that precisely shows the properties of
a topological superconductor.

There has been a lot of theoretical [27–30] and, most
importantly, experimental progress in this direction: Single
Shiba states have been visualized, both in 3D and 2D
superconductors [31–33], as well as a one-dimensional chain
of Shiba impurities that gives rise to a Shiba band. [14,15]
Probing by the aid of STM techniques allows us to reveal
the spectral properties of these systems locally. Moreover, it
was shown experimentally that such a chain supports zero
energy states at its edge which were claimed to be Majorana
fermions [34–36]. Two-dimensional structures have been

also addressed, both theoretically and experimentally [37],
where magnetic impurities formed a two-dimensional Shiba
band showing zero energy Majorana running modes at its
edges.

Such studies did not address the out-of-equilibrium physics
associated with the dynamics of the magnetic impurities.
Magnetization dynamics is at the core of various effects in
ferromagnets, such as, for example, the spin pumping and the
spin-transfer torque, which allows us to create and transfer the
spin degree of freedom between different systems. It allows
us to visualize both the equilibrium, but more importantly, the
out-of-equilibrium properties of a magnetic system. It is thus
of crucial importance to analyze the interplay of magnetization
dynamics and the Shiba physics in superconductors.

In this paper we study the magnetization dynamics of a
single magnetic impurity in an s-wave superconductor, the
building block of a Shiba impurity band. The precession of
the impurity gives rise to a dynamical Shiba state that drives
both an electrical and spin current through an STM tip in
its proximity. We calculate these currents and show that such
a method allows us to spectroscopically address the Shiba
impurity and its dynamics.

The paper is organized as follows: In Sec. II we introduce
the setup and the model Hamiltonian of the dynamical Shiba
states, in the presence of the STM tip. In Sec. III we develop
the rotating wave formalism (RW) of the model and describe
the resulting dynamical Shiba states. Here we also investigate
the (quasi)energy spectrum and the time-dependent wave
functions. In Sec. IV we switch on the coupling to the STM
tip and analyze the charge and spin transport pertaining to the
precessing magnetic moment through a normal STM tip. We
analyze both the closed circuit (finite current, no voltage),
as well as the open circuit (zero current, finite voltage)
circuits. Finally, in Sec. V we end up with conclusions and
some outlook on possible extensions for a chain of Shiba
impurities.
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FIG. 1. The sketch of the dynamical Shiba setup. A classical spin
(long red arrow) embedded in a two-dimensional superconductor
(blue plane) precesses at a frequency ω ≡ 2b and with an angle θ

with respect to the z axis. A localized Shiba state forms around the
classic spin, whose wave function ψS(r,t) depends on both time
and position. An STM tip couples to this localized state and detects a
voltage due to the spin and charge currents pumped via the dynamical
Shiba state.

II. SYSTEM AND MODEL HAMILTONIAN

In this section we introduce the system and the model
Hamiltonian. In Fig. 1 we show a sketch of the system: a pre-
cessing classical magnetic impurity in an s-wave superconduc-
tor. The precession could be induced, for example, by utilizing
a microwave field from a nearby stripline resonator that drives
the impurity with a given frequency via the ferromagnetic
resonance. The electrons in the superconductor are coupled
to the impurity via the exchange coupling, which results in
the occurrence of an in-gap Shiba state. An STM tip nearby
the impurity is assumed to probe the emergent Shiba state
via the out-of-equilibrium currents, both charge and spin
traversing the tip due to the precessing impurity. The tip is
assumed to be a normal metal, but generalizations to ferro-
magnetic, or even superconducting tips, are straightforward.

The Hamiltonian describing the superconductor in the
presence of the magnetic impurity, the STM tip, and its
coupling to the superconductor, respectively, is given as:

Htot = HS + HM + HT ,

HS =
∫

d rψ†
S(r)[εSτz + �sτx + Jδ(r)S(t) · σ ]ψS(r) ,

(1)

HM =
∫

d r
∑

σ

ψ
†
T σ (r)εT ψT σ (r),

HT = T
∑

σ

[ψ†
Sσ (0)ψT σ (0) + ψ

†
T σ (0)ψSσ (0)],

where ψ
†
S ≡ (ψ†

S↑,ψ
†
S↓,ψS↓, − ψS↑), εS(T ) = −h̄2∇2/2m −

μS(T ), with μS(T ) the chemical potential in the superconductor
(STM tip), �s is the s-wave pairing in the superconductor,
J is the exchange coupling between the classical spin S(t) =
S0(sin θ sin 2bt, sin θ cos 2bt, cos θ ) and the electrons in the
superconductor, with S0 and θ being the magnitude and the

angle between the z axis and the classical spin S, respectively.
Also, T is the hoping strength between the STM tip and
the superconductor, 2b the magnetic impurity precession
frequency, and ψSσ (r) [ψT σ (r)] and ψ

†
Sσ (r) [ψ†

T σ (r)] are the
annihilation (creation) operators for electrons at position r and
spin σ in the superconductor and the STM tip, respectively.
Note that τ = (τx,τy,τz) and σ = (σx,σy,σz) are Pauli matrices
that act in the Nambu and spin space, respectively. We mention
that in general the magnetic impurity generates also a scalar
potential, besides the magnetic exchange coupling. For the
time being and for the clarity of the description, we disregard
such a contribution at this stage, and we will discuss its effects
(which turn out to be crucial) later in the section about the
electronic transport. In the following, we analyze the above
Hamiltonian in the absence of the coupling to the STM tip,
thus only considering the precessing impurity.

III. ROTATING WAVE DESCRIPTION
OF THE SUPERCONDUCTOR

The solution for the static Shiba impurity is well known.
There are many works that describe the static Shiba impurity
state, both their spectrum and wave function in various dimen-
sions [2–5,38]. Here we generalize those works for the case of
the precessing impurity, and provide the theoretical framework
for the experimental detection of such precession, and even-
tually of the Shiba state itself. For simplicity, we assumed the
impurity precesses circularly, otherwise the problem becomes
more involved, though still tractable. There are various ways
to approach the time-dependent problem. For periodic driving,
like it is the case here, one approach is to utilize the so-called
Floquet formalism, that is analog to the Bloch wave function
description of electrons in a periodic potential. The second
approach is to utilize the rotating wave (RW) description,
which implies switching to a rotating frame turning with the
impurity, in which case the effective Hamiltonian becomes
static, and perform calculations similarly to the static Shiba
impurity. In the following we utilize the latter approach, well
suited when there are no spin-orbit interactions present.

For that, we perform the following time-dependent trans-
formation of the total Hamiltonian:

H̃tot = U †(t)Htot(t)U (t) − i∂tU
†(t)U (t), (2)

where we choose U (t) = exp (iσzbt). This transformation
pertains to the following changes in Eq. (1):

S(t) → S(0) = S0(sin θ sin �, sin θ cos �, cos θ ), (3)

Hj → Hj − b

∫
d rψ†

j (r)σzψj (r), (4)

where j = S,T and � ∈ [0,2π ), while all the other terms stay
the same under this transformation. In a nutshell, in the rotating
frame the precessing spin becomes static and points along a
direction defined in Eq. (3), while both the superconductor
and the tip are subject to a fictitious magnetic field of size b

along the z direction. Note that this fictitious field does not
affect the superconductor gap, as it does not enter the gap
equation. The wave functions in the two frames are related
by ψ(r,t) = U (t)ψ̃(r,t), with ψ(r,t) [ψ̃(r,t)] being the wave
function in the laboratory (rotating) frame.
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Next we solve the spectrum of the Shiba state in the rotating
frame. A natural way to proceed is by calculating the retarded
Green’s function of the superconductor in the presence of the
impurity, and extracting the Shiba energy from its poles [1].
This can be found from the Dyson equation:

G−1
S (ω) = G−1

0 (ω) − J S(0) · σ , (5)

where G0(ω) is the bare Green function of the superconductor
for frequency ω and at r = 0 in the presence of the fictitious
magnetic field b, and which reads:

G0(ω) = −πν0

2

∑
σ=±1

ω + σb + �sτx√
�2

s − (ω + σb)2
(1 + σσz). (6)

Here, ν0 is the density of states of the superconductor in the
normal state at the Fermi level. Note that in the limit b → 0
we recover the usual Green’s function of a superconductor
at position r = 0 [1]. While we can now invert Eq. (5) and
find its poles, the general solution is too long to be displayed
and it is not very insightful either. There are, however, a few
limits worth depicting, in particular in the case δ ≡ b/�s � 1.
Such a limit also implies that the bulk gap is not closed in
rotating frame. Full analytical results are obtainable for two
specific angles, θ = 0 and θ = π/2. For θ = 0, we simply
obtain ES(b) = εs + b, with εs = �s(1 − α2)/(1 + α2) being
the Shiba state energy at b = 0 [1], with α ≡ πJS0ν0, while
for θ = π/2 we get:

ES(b) = (1 + α4) −
√

(1 − α4)2δ2 + 4α4

1 − α4
�s, (7)

which highlights the nonlinear behavior of the Shiba energy
as a function of the driving b. This becomes exactly ES(0) for
α → 1, which implies no dependence on the driving frequency.
Moreover, we can infer the full θ dependence of the Shiba
energy for the case α = 1:

ES(b,θ ) =
√

2δ2 − tan2 θ + tan2 θ
√

1 − 4δ2 cos2 θ

2
�s. (8)

Instead of utilizing exact solutions (simple in a few cases), it
is instructive to extract approximate Shiba energies valid in the
limit δ � 1, and α ≈ 1 (the so-called deep Shiba limit). Then,
as showed in Appendix A, the Shiba states Green’s function
becomes:

GS(ω) ≈ 1

ω − ES(b,θ )
[1 + (u2 − v2)τz + uvτx](1 + σ‖),

(9)

with ES(b,θ ) � εs + b cos θ being the Shiba energy in the
rotating frame. The correction to the energy of the Shiba state
is of the order δ2, while the neglected entries of the matrix
GS(ω) are of the order δ sin θ/α, and they also lead to more
complicated spin-mixing terms. In Appendix A we present
the leading order corrections to the matrix GS(ω). Here u and
v are the electron and hole components, respectively, of the
Shiba state wave function, and σ‖ = S · σ/|S|, i.e., the spin
projection along the magnetic impurity. In the case of purely
magnetic scattering u = v = 1/

√
2, but in general u = v if

scalar scattering is taken into account [39]. We will keep their
relative value arbitrary in the following, and for their general

expressions we refer the reader to Ref. [35]. We mention that
the particle-hole symmetric solution −ES(b) can be found by
applying the particle-hole conjugation operator P = τyσyK to
the above Shiba Green’s function: GS(ω) → PGS(ω)P†.

Physically, the above solution corresponds to a magnetic
impurity in a superconductor and subject to an external mag-
netic field B = b cos θ along the magnetic impurity direction.
In the δ � 1 limit the transverse component of the fictitious
magnetic field is suppressed and can be neglected, much in
the same way such components are ineffective in a usual
ferromagnet [40]. However, while there the scale for neglecting
these terms is the exchange field J , here the situation is more
complicated, as it requires that both δ � 1 and α ≈ 1. A few
more comments are in order at this point. For b > �s the
superconducting gap is closed in the rotating frame and the
quasistationary Shiba state will always be resonant with the
the continuum of states, and thus not protected. Even more, in
the limit δ � 1, we recover the case of an impurity in a normal
metal, and the associated effects, for example that in such a
case there is no charge current flowing through the normal
STM tip tunnel coupled to the impurity [40,41]. On the other
hand, for δ < 1, the superconducting gap in the rotating frame
diminishes, i.e., it becomes �eff

s = �s − b, and Shiba states
can occur within this gap. In the present work we focus only
on the limit δ � 1, and thus assume such solutions are always
present.

For completeness, we also discuss briefly the position-
dependent wave-function of the driven Shiba state and, for
simplicity, we focus on a two-dimensional superconductor. At
r = 0, this is given by φ̃S(0) = (u,0,v,0)T . From this, we can
readily find the r dependence of the Shiba wave functions as
follows [1]:

φ̃S(r) = G0(ES,r)Veffφ̃S(0), (10)

where

G0(ES,r) =
∑
σ=±

[
(ES + σb)Xσ

0 (r) + Xσ
1 (r)

+�sX
σ
0 (r)τx

]
(1 + σσ‖), (11)

with:

Xσ
0 (r) = −

∫
d p

(2π )2

ei p·r

ξ 2
p + �2

s − (ES + σb)2

= −2ν0
1

ωσ

Im K0

[
− i

(
1 + i

ωσ

vF pF

)
pF r

]
, (12)

Xσ
1 (r) = −

∫
d p

(2π )2

ξpei p·r

ξ 2
p + �2

s − (ES + σb)2

= −2ν0Re K0

[
− i

(
1 + i

ωσ

vF pF

)
pF r

]
. (13)

Above, K0(x) is the Bessel function of the second kind,
and ω2

σ ≡ �2
s − (ES + σb)2. Detailed derivation of these

expressions is left for Appendix B. These expressions allow
us to extract the full wave function of the dynamical Shiba
states, or to perform the small expansion b in order to extract
approximate expressions for the electron and hole components
at a distance r from the impurity, which in turn would allow us,
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as described in the next section, to calculate currents detected
at that distance.

IV. CHARGE AND SPIN CURRENTS

In the previous section we calculated the spectral properties
of the dynamical Shiba state forming around a precessing
magnetic moment. Here we address the electronic transport
between the dynamically formed Shiba state and an STM tip
brought into its proximity. We will derive both the charge
and spin currents flowing through the STM tip due to the
magnetic precession at r = 0. The generalization r = 0 is
straightforward by utilizing the results in the previous section.
We will consider two cases: the closed and open circuits, which
in turn will give a finite current in the absence of a voltage and
a finite voltage in the absence of a current, respectively.

The charge and spin current operators are defined as
follows:

Îc ≡ ie[HT ,NT ] = ieT
∑

σ

[ψ†
Sσ (0)ψT σ (0) − H.c.], (14)

Î s ≡ ih̄[HT ,ST ] = ih̄T
∑

σ

[ψ†
Sσ (0)(σ )σσ ′ψT σ ′(0) − H.c.],

(15)

where we utilized the following substitutions: NT =∑
k,σ c

†
T kσ cT kσ for the number of electrons, and

ST = h̄
∑
k,σ

c
†
T kσ (σ )σσ ′cT kσ ′, (16)

for the total number of spins in the STM tip, respectively.
In order to calculate the average current, we utilize the
nonequilibrium Green’s function technique, and for details
on the calculations we refer the reader to Refs. [39] and [42].
The expression for the charge current reads:

Ic(t) = 2eT
h̄

Tr[τz(τzĜ
<
ST (t,t) − Ĝ<

T S(t,t)τz)], (17)

while the spin current I s(t) is found by substituting the first τz

with σ . Above, Ĝ<
ij (t ′,t) = i〈ψ†

i (t)ψj (t ′)〉 is the lesser Green’s
function in the Nambu ⊗ spin space (4 × 4 matrix), with i,j =
S,T . Note that (ψi)T ≡ (ψ†

i↑,ψ
†
i↓,ψi↓, − ψi↑). We are thus left

with the task of calculating the Ĝ<
ij (t ′,t) at t = t ′. While this is

a time-dependent problem, by switching to the rotating frame,
we can proceed to calculate the transport quantities as for the
time-independent case. In the frequency domain, the following
relations hold [35,43]:

G<
ST (ω) = T

[
Gr

S(ω)τzg
<
T (ω) + G<

S (ω)τzg
a
T (ω)

]
, (18)

G<
T S(ω) = T

[
gr

T (ω)τzG
<
S (ω) + g<

T (ω)τzG
a
S(ω)

]
, (19)

where G
<,r,a
S (ω) (g<,r,a

T (ω)) are the lesser, retarded, and ad-
vanced Green’s functions of the superconductor (STM tip).
Using these relations, and rearranging the terms accordingly,
we obtain the following well-known expression for the
current [43]:

Ic = 2eT 2

h̄

∫
dωTr[G>

S (ω)g<
T (ω) − G<

S (ω)g>
T (ω)]. (20)

Thus, we need only the lesser and greater Green’s functions
of the superconductor and the tip, respectively. Since we are in-
terested in the transport through the in-gap Shiba state, we will
utilize only the Green’s function of this state and not the
whole superconductor. Moreover, for the transport to occur, we
need to account for various processes that give rise to a finite
lifetime of the Shiba state, such as photon, or phonon-assisted
relaxation (or excitation) into the gapped continuum of states,
and due to the coupling to the tip [39]. We get (for details
regarding the derivation see Appendix C):

G<
S (ω) = i

nS�ph + ∑
σ,τ �τnτ,σ (1 + σ cos θ )

[ω − ES(b,θ )]2 + (�tot/2)2

× [1 + (u2 − v2)τz + uvτx](1 + σ‖), (21)

where �tot = �e + �h + �ph, with �e(h) =
2πν0T 2u2(v2), �ph is the intrinsic width of the Shiba
state (due to photons or phonons, for example),
nτσ (ω) = nF (ω − τV − σb), with τ,σ = ±1 are the
Fermi distribution functions in the STM tip for electrons
(τ = 1) and holes (τ = −1) with a given spin σ , while
V is the applied or the induced voltage in the combined
system. Moreover, nS = nF [ω − ES(b,θ )]. We mention
that G>

S (ω) can be found simply by substituting all Fermi
functions by nF → −1 + nF in the above expression. Note
that the spin direction quantization is different in the two
systems: The Shiba state is defined along the magnetization
m(0), while the fictitious biases in the STM tip are defined
along the z direction. The α = a,r, > , < Green’s function
of the STM tip in the Shiba spin basis can be written as
gα

T (ω) = U (θ )g̃α
T U †(θ ), with U (θ ) = exp (iθσy/2), and

g̃α
T (ω) =

∑
σ

g̃α
T ,σ (ω + σb + ττz)(1 + ττz)(1 + σσz), (22)

being the Green’s function of the STM tip in the z spin basis,
with g̃α

T ,σ (ω) the components of the Green’s function of a bare
Fermi gas at position r = 0. Putting everything together in the
expression for the current, we obtain Ic = I s

c + I a
c , with

I s
c = e

h

∫
dω

∑
σ,τ

τ�ph�τ (nτσ − nS)(1 + σ cos θ )

[ω − ES(b,θ )]2 + (�tot/2)2
, (23)

I a
c = 2e

h

∫
dω

∑
σ,τ

τ�e�hnτσ (1 + σ cos θ )

[ω − ES(b,θ )]2 + (�tot/2)2
, (24)

which describe the single particle and the Andreev reflection
induced charge currents, respectively. In Fig. 2 we show a
sketch of the transport processes giving rise to a current, both
in the electron and hole pictures, along with the possible re-
laxation channels. For completeness, we assume the presence
of both a spin and voltage biases driving out-of-equilibrium
currents. The latter arises in the case when the circuit formed
by the Shiba state and the STM tip is open, i.e., there is no
current flowing, but a finite voltage bias drop builds across
the tunneling region. In the closed circuit instead, the voltage
is zero, but there is a dc charge current flowing. In this
case, nτσ ≡ nσ , which implies I a

c ≡ 0 and I s
c ∝ (�e − �h).

This means that for a current to flow in the presence of
magnetization precession the electron and hole components
of the Shiba state must be different. Such a difference arises
naturally if one assumes, besides the spin scattering, the
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FIG. 2. A sketch of the transport channels in the rotating frame,
in the presence of spin (b) and voltage (V ) biases. Both the electron
and hole pictures are presented, with the corresponding rates �e(h) ∝
u2(v2) (see text for details). The original Shiba state εs and the one in
the rotating frame ES(b,θ ) = εs + b cos θ are shown. The Shiba state
is thermalized via internal relaxation processes that are accounted for
by the rate �ph that mediates transitions between the bulk and the
Shiba state.

presence of a scalar potential too, as mentioned already in
the previous section. This is in contrast to the usual voltage
probed Shiba state, where such an asymmetry is not required,
and the current is proportional to u2 (v2) for voltages V = εs

(V = −εs).
In Fig. 3 we show the dependence of the pumped dc current

into the STM tip as a function of the precession frequency
(main plot) and the precession angle (inset). In this case, there
is no voltage bias present and the entire current is given by the
single particle current. The current is a nonmonotonic function
of b and shows peaks when it becomes similar to the bare
Shiba energy, i.e., εs � b cos θ . The maximum voltage is found
for θ ≈ π/2, which shifts to lower precession angles as the
precession frequency is increased. We mention that the current
has the symmetries Ic(b,θ ) = Ic(−b,π − θ ).

In the case of a static impurity that is voltage probed by an
STM tip, one defines the differential conductance of the system
G = dI/dV . Similarly, in the present case one can define a
differential magnetoconductance as Gb(b,θ ) = dIc/db, which
at zero temperature acquires the following simple form:

Gb = 4b�ph(�e − �h)ES(b,θ ) sin2 θ

[b2 + ES(b,θ )2 + (�tot/2)2]2 − 4b2E2
S(b,θ )

, (25)

which is plotted in Fig. 4 as a function of the fictitious field
b and for various values of εs . This vanishes in the static
case b = 0, as well as for b = εs/ cos θ , and thus shows a
pronounced nonmonotonic behavior as a function of b that can
be utilized to map out the spectral properties of the Shiba state.
As stated before, in the case of an open circuit one detects a
voltage instead of a current. By imposing the Ic = 0, we obtain
the induced voltage in the circuit, which is depicted in the main
plot in Fig. 5. More precisely, in the main plot we consider the
voltage at T = 0, while in the inset we depict the variation of
one of the curves for various temperatures. Depending on the
energy of the Shiba state, the induced voltage can be either
positive or negative, or it can even be nonmonotonic as a
function of the precession frequency. Note that relatively large
values (of the order 0.1b) are achievable for such a voltage,
and they are not spoiled by finite temperature effects as long as
this is not larger than the Shiba energy T � ES(b,θ ). Here we
neglected the dependence of the gap itself on the temperature

FIG. 3. Main: The magnetic impurity precession induced charge
current in the closed circuit as a function of the precession frequency
b for various values of the Shiba energy εs . Only the I s

c contributes
to the current. The current is a measure of the presence of the Shiba
impurity and highlights its position. For the plots we assumed εs =
0,0.1,0.2,0.3, and 0.4. Inset: the current as a function of θ for b =
0,0.05,0.1,0.2, and 0.3. All energies are expressed in terms of the
superconducting gap �s , and I0 = (e/h̄�s)�ph(�e + �h), while we
assumed (�e − �h)/(�e + �h) = 0.6.

as we assume variations of T over an energy scale of the order
εs � �s .

We can also evaluate the spin current pertaining to the mag-
netization dynamics, and we only assume the z component.

I z
s = h

∫
dω

∑
σ,τ

�ph�τ (nτσ − nS)(1 + σ cos θ )

[ω − ES(b,θ )]2 + (�tot/2)2
, (26)

which vanishes for vanishing θ or b. The efficiency of
spin injection from the precessing magnetic impurity can be
quantified by a spin magnetoconductivity, Gs(b,θ ) = dIz/db,
which differs from the charge counterpart only in the change
�e − �h → �e + �h. We thus refer to the previous results
on the charge current with the aforementioned substitution.
Note that for the spin current to flow, there is no need for
particle-hole asymmetry in the Shiba wave function, in contrast
to charge.

Finally, let us give some pertinent estimates for the effects
described in the paper. For that, let us assume the case of Shiba
states formed by Mn adatoms inserted on a Pb superconducting
surface like the ones studied experimentally in Ref. [35]. For
the Shiba energy they found εs ≈ 0.2 meV at T = 1.2 K and
with �s ≈ 1.4 meV. Such values already satisfy the require-
ments of our paper, namely εs � �s , and it justifies neglecting
higher order contributions in the precession frequency b in our
theory (assumed to be comparable to εs). Such precession
frequency are in the gigahertz regime, the typical range for
microwave driving of ferromagnetic systems. Studying the
linewidths of the Shiba states resonances, in Ref. [35] they
also extracted the photon relaxation rates, for which they found
�ph ∼ 5 μeV at T = 1.2 K. Assuming the tunneling regime,
so that (�e + �h)/�ph = 0.2 � 1, we obtain for I0 ≈ 10−12 A
(see Fig. 3), a value that is within the experimental range, as
shown again in Ref. [35]. Utilizing the same arguments, we
can also give some estimates on the induced voltage in an open
circuit. Assuming b ≈ εs , and the same values for the other
parameters as above, we can infer from Fig. 5 that voltages
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FIG. 4. Dependence of the differential magnetoconductance
G(b,θ ) in Eq. (25) on the precession frequency b for εs =
0, 0.1, 0.2, 0,3, and 0.4, and for θ = π/6.

of the order V ∼ 0.1b (or V ≈ 0.02 meV) are expected to
be collected, which is again within the experimental reach.
Note that these are conservative estimates, larger values being
possible by increasing the precession frequency b.

V. CONCLUSIONS AND OUTLOOK

In this paper we studied the dynamics of a magnetic
impurity in an s-wave superconductor and its manifestations
in the tunneling current through an STM tip. We found that
in leading order in the precession frequency b (as compared
to the bulk superconductor gap �s), the main effect of the
precession is to give rise to a shift of the Shiba levels by
b cos θ , while the bulk gap is reduced as �eff

s (b) = �s − b.
We found that such a precession manifests itself in a current
flow that can be detected by an STM tip. Utilizing the
nonequilibrium Green’s function technique, we calculated
both the charge and spin currents flowing into the STM tip
and found that it gives a direct measure of the presence of
the Shiba state. Moreover, in analogy with the voltage biased
systems, where one defines the differential conductance as
measure of the presence of in-gap Shiba states, here we defined
a differential magnetoconductance, Gb = dIc/db, that reflects
the resolution of the magnetization precession into a voltage
bias. We found that this quantity reveals the Shiba state level
and that it vanishes for frequencies much larger than the
superconducting gap. As opposed to static STM measurement,
where the system is voltage biased, the asymmetry between the
electron and hole components of the Shiba state is crucial: No
current is flowing for a perfectly symmetric particle-hole Shiba
state, and this could be utilized to extract such an asymmetry,
as well as to reveal the relevance of the spin degree of freedom.

Our study was conducted assuming the precession of the
magnetic moment was imposed externally by the magnetic
fields of a nearby microwave cavity. An extension of our theory
could be done by accounting for the dynamics of the magnetic
moment in a self-consistent manner, for example by utilizing
the Landau-Lifshitz-Gilbert equation in the presence of the
superconducting condensate. That, on one hand, will describe
the combined dynamics, while on the other hand, it would
allow one to extract the influence of the Shiba state on the
magnetization dynamics itself, which could be probed by the
nearby microwave cavity.

FIG. 5. Main: The magnetization precession induced voltage in
the open circuit as a function of the precession frequency b for
various values of the Shiba energy εs . For the plots we assumed
εs = 0,0.1,0.2,0.3, and 0.4. Inset: the induced voltage as a function
of b for different temperatures, T = 0,0.05,0.1,0.2, and 0.3, with
εs = 0.1. All energies are expressed in terms of the superconducting
gap �s , and we assumed (�e − �h)/(�e + �h) = 0.6.

Finally, an extension of the time-dependent problem to a
chain of Shiba impurities should allow us to study the interplay
between the magnetization dynamics and the emergence of
in-gap topological superconductivity, or the so-called Shiba
bands [14]. Moreover, it turns out it is possible, by means of
driving, to change the band structure, and even topology [44],
similarly to the well-known Floquet topological insulators.
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APPENDIX A: SHIBA STATE PROPAGATOR IN LEADING
ORDER IN δ = b/�s

In this Appendix we present the leading order correction in δ

for the propagator of the Shiba state. We start from the Dyson
equation in the presence of impurity, and here we consider
both a magnetic and scalar scattering, respectively. The scalar
scattering Hamiltonian reads:

HV =
∫

d rψ†
S(r)τzV δ(r)ψS(r) = ψ

†
S(0)τzV ψS(0), (A1)

with V the strength of the scalar scattering. Next we follow
the derivation in Ref. [35], adapted to our case of a Zeeman-
split superconductor. The Dyson equation for the full Green’s
function reads:

G−1
S (ω) = G−1

0 (ω) − J S(0) · σ − V τz, (A2)

where G0(ω) is the Green’s function of the bulk superconduc-
tor in a Zeeman field, depicted in Eq. (5), and which can be
solved in full glory, but here we present only the approximate
expression for this function, along with the expressions for
the Shiba energy and the electron and hole coherence factors.
In order to connect with the case of zero driving (b = 0),
it is instructive to switch to a reference frame in which the
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static impurity (in the rotating frame) points along the z

axis. This means we need to perform a unitary rotation on
the full superconducting Hamiltonian HS → U (θ )HSU

†(θ ),
where U (θ ) is given before Eq. (22). The general expression
for the Shiba Green’s function reads:

GS ≈ 1

ω − ES(b,θ )

⎛
⎜⎜⎝

u2
↑ u↑u↓ u↑v↓ u↑v↑

u↑u↓ u2
↓ u↓v↓ u↓v↑

u↑v↓ v↓u↓ v2
↓ v↓v↑

v↑u↑ v↑u↓ v↑v↓ v2
↑

⎞
⎟⎟⎠ ,

︸ ︷︷ ︸
MS

(A3)

where in leading order in δ = b/�s , the entries of the matrix
read:

u2
↑ = 2απν0�s[1 + (α + β)2]

[(1 − α2 + β2)2 + 4α2]3/2
(A4)

v2
↓ = 2απν0�s[1 + (α − β)2]

[(1 − α2 + β2)2 + 4α2]3/2
(A5)

u↑u↓ = v↑v↓ = δ sin θ

4α
(A6)

u↑v↓ = 2απν0�s

[(1 − α2 + β2)2 + 4α2]2
(A7)

u↑v↑ = − δ[1 + (α − β)2] sin θ

[(1 − α2 + β2)2 + 4α2]2
(A8)

u↓v↓ = − δ[1 + (α + β)2] sin θ

[(1 − α2 + β2)2 + 4α2]2
, (A9)

while all the other terms are of order O(δ2) and we neglect
them in the following, i.e., we take u2

↓ = v2
↑ = u↓v↑ = 0.

Here, α = 2πν0J and β = 2πν0V , and we note that the Shiba
energy, in leading order in b is given by ES = εs + b cos θ ,
as already stated in the main text. We can see that if we take
the zeroth order correction in δ, that corresponds to the Shiba

Green’s function in Ref. [35] with the energy ES , and with
u↑ = v↓ for β = 0. Note that for the terms ∝ δ to be small, the
condition α ≈ 1 needs to be met also, as stressed in the main
text (i.e., the system is in the deep Shiba limit). With all these
approximations, we can rewrite the Shiba Green’s function in
the form shown in the main text, i.e.:

GS(ω) ≈ 1

ω − ES(b,θ )
[1 + (u2 − v2)τz + uvτx](1 + σ‖)︸ ︷︷ ︸

Meff
S

,

(A10)

where u ≡ u↑, and v ≡ v↓ in the above expression.

APPENDIX B: GREEN’S FUNCTION AT FINITE r AND
THE INTEGRALS

We write the Green’s function in coordinate space in the
following form:

G0(ES,r) =
∑
σ=±

[
(ES + σb)Xσ

0 (r) + Xσ
1 (r) + �sX

σ
0 (r)τx

]
× (1 + σσ‖). (B1)

To find the coordinate dependence we need to calculate the
following integrals:

X±
0 (r) = −

∫
d p

(2π )2

ei pr

ξ 2
p + �2

s − (E ± b)2
, (B2)

X±
1 (r) = −

∫
d p

(2π )2

ξp ei pr

ξ 2
p + �2

s − (E ± b)2
. (B3)

We linearize the spectrum around Fermi level ξp = vF (p −
pF ) and rewrite

∫
d p

(2π)2 = ν0
∫

dξp. Since we are computing
the retarded Green’s function we add an infinitesimal positive
energy shift E → E + i0:

X±
0 (r) = −

∫
d p

(2π )2

ei pr

ξ 2
p + �2

s − (E ± b)2
= −ν0

∫
dξp

∫
dφp

2π

eipr cos(φp−φr )

ξ 2
p + �2

s − (E ± b)2 − i sgn(E ± b) · 0

= − ν0

[
P

∫
dξp

J0[(pF + ξp/vF )r]

ξ 2
p + �2

s − (E ± b)2
+ iπ sgn(E ± b)

∫
dξp · δ

(
ξ 2
p + �2

s − (E ± b)2
) · J0[(pF + ξp/vF )r]

]

X±
1 (r) = −

∫
d p

(2π )2

ξp ei pr

ξ 2
p + �2

s − (E ± b)2
= −ν0

∫
dξp

∫
dφp

2π

ξp eipr cos(φp−φr )

ξ 2
p + �2

s − (E ± b)2 − i sgn(E ± b) · 0

= − ν0

[
P

∫
dξp

ξpJ0[(pF + ξp/vF )r]

ξ 2
p + �2

s − (E ± b)2
+ iπ sgn(E ± b)

∫
dξp · δ

(
ξ 2
p + �2

s − (E ± B)2
) · ξpJ0[(pF + ξp/vF )r]

]
.

We assume the (effective) Shiba energy satisfies ES(b,θ ) ∈ (−�s + b,�s − b) and we denote ω± = √
�2

s − (E ± b)2. We get:

X±
0 (r) = − ν0P

∫
dξp

J0[(pF + ξp/vF )r]

ξ 2
p + ω2±

= −2ν · 1

ω±
ImK0[−i(1 + i�±)pF r],

X±
1 (r) = − ν0P

∫
dξp

ξpJ0[(pF + ξp/vF )r]

ξ 2
p + ω2±

= −2ν · ReK0[−i(1 + i�±)pF r],

where �± ≡ ω±
vF pF

. For further details see Ref. [38].
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APPENDIX C: DERIVATION OF THE SHIBA GREEN
FUNCTION IN THE PRESENCE OF THE STM

Here we give more details on the derivation of the charge
and spin currents flowing through the STM tip assuming the
approximations above: δ � 1 and α ≈ 1. In order to calculate
the currents, we need to evaluate the lesser Green’s functions
G<

RL(t1,t2) and G<
LR(t1,t2), as stated in the main text. While for

a voltage biased Shiba state, one can utilize the simplified 2 × 2
matrix description, here, because of the noncollinearity of the
spin distributions in the superconductor (more precisely, of the
in-gap Shiba state) and the STM tip, respectively, we have to
consider the full 4 × 4 matrix in order to correctly describe
the transport. We assume, as in Ref. [35], that there are two
contributions to the Shiba Green’s function self-energy: one
intrinsic, due to photon-assisted excitations between the Shiba
state and the bulk, and one due to the coupling to the tip. The
first contribution can be taken into account as follows [35]:

g
r,a
S (ω) = 1

ω − ES(b,θ ) ± i�ph/2
Meff

S , (C1)

g
<,>
S (ω) = �

<,>
ph (ω)

[ω − ES(b,θ )]2 + (�ph/2)2
Meff

S , (C2)

where �<
ph(ω) = i�phn

S
F (ω) and �>

ph(ω) = −i�ph(ES)[1 −
nS

F (ω)], with �ph(ES) being the finite width of the Shiba state
induced by the photon-assisted excitations with the bulk. Note
that the distribution function of the Shiba state reads:

nS
F (ω) = 1

e(ω−b cos θ)/T + 1
, (C3)

namely the quasistatic chemical potential is shifted by b cos θ

(the Shiba state is assumed to adiabatically follow the
precession in the rotating frame). Next we can modify the
Shiba Green’s functions in order to account for the coupling
to the STM tip. From the Dyson equation we obtain:

Gα
S (ω) = 1

1 − gα
S (ω)�α

S (ω)
gα

S (ω), (C4)

where α = r,a, < , >, and

�α
S (ω) = T 2τzg

α
T (ω)τz = T 2τzU (θ )g̃α

T (ω)U †(θ )τz (C5)

is the Shiba state self-energy. Here,

g̃α
T (ω) = 1

4

∑
σ,τ=±1

g̃α
T (ω + τV + σb)(1 + ττz)(1 + σσz),

(C6)

where

g̃r,a
T (ω) = ∓ 2πiν0, (C7)

g̃<
T (ω) = 2πiν0n

T
F (ω), (C8)

g̃>
T (ω) = − 2πiν0

[
1 − nT

F (ω)
]
. (C9)

We then obtain:

�α
S (ω) = (T /2)2

∑
σ,τ=±1

g̃α
T (ω − τV − σb)(1 + ττz)

× [1 + σ (σz cos θ + σx sin θ )]. (C10)

That allows us to extract the renormalized Shiba Green’s
functions as follows:

G
a,r
S (ω) = 1

ω − ES(b,θ ) ± i�tot/2
Meff

S , (C11)

G<
S (ω) = i

nS
F (ω)�ph + ∑

τ,σ �τn
T
F,τ,σ (ω)(1 + σ cos θ )

[ω − ES(b,θ )]2 + (�tot/2)2
Meff

S ,

(C12)

while G>
S (ω) is found by simply substituting all the Fermi-

Dirac functions above as follows: nF → −1 + nF (ω). By
utilizing the above expression, along with that for gα

T (ω),
and inserting these into Eq. (19), we can easily obtain the
expression for the charge current shown in Eq. (24).
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