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Abstract. Computational approaches for inferring the mechanisms of compound-protein interactions (CPIs)
can greatly facilitate drug development. Recently, although a number of deep learning based methods have
been proposed to predict binding affinities and attempt to capture local interaction sites in compounds and
proteins through neural attentions, they still lack a systematic evaluation on the interpretability of the iden-
tified local features. In addition, in these previous approaches, the exact matchings between interaction sites
from compounds and proteins, which are generally important for understanding drug mechanisms of ac-
tion, still remain unknown. Here, we compiled the first benchmark dataset containing the inter-molecular
non-covalent interactions for more than 10,000 compound-protein pairs, and used it to systematically eval-
uate the interpretability of neural attentions in existing prediction models. We developed a multi-objective
neural network, called MONN, to predict both non-covalent interactions and binding affinity for a given
compound-protein pair. MONN uses convolution neural networks on molecular graphs of compounds and
primary sequences of proteins to effectively capture the intrinsic features from both inputs, and also takes
advantage of the predicted non-covalent interactions to further boost the accuracy of binding affinity pre-
diction. Comprehensive evaluation demonstrated that while the previous neural attention based approaches
fail to exhibit satisfactory interpretability results without extra supervision, MONN can successfully predict
non-covalent interactions on our benchmark dataset as well as another independent dataset derived from the
Protein Data Bank (PDB). Moreover, MONN can outperform other state-of-the-art methods in predicting
compound-protein binding affinities. In addition, the pairwise interactions predicted by MONN displayed
compatible and accordant patterns in chemical properties, which provided another evidence to support the
strong predictive power of MONN. These results suggested that MONN can offer a powerful tool in pre-
dicting binding affinities of compound-protein pairs and also provide useful insights into understanding the
molecular mechanisms of compound-protein interactions, which thus can greatly advance the drug discov-
ery process. The source code of the MONN model and the dataset creation process can be downloaded from
https://github.com/lishuya17/MONN.
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1 Introduction
Elucidating the mechanisms of compound-protein interactions (CPIs) plays an essential role in drug dis-
covery and development [1, 2]. Although various experimental assays [3] have been widely applied for
drug candidate screening and property characterization, identifying hit compounds from a large-scale chem-
ical space is often time- and resource-consuming. To relieve this bottleneck, computational methods are
typically used to reduce time and experimental efforts [4]. For example, it has been shown that effective
high-throughput virtual screening can greatly accelerate the lead discovery process [5].

Apart from the binding and functional assays, structure determination of compound-protein complexes
can shed light on the molecular mechanisms of CPIs and thus significantly promote the lead optimization
process. In particular, based on the molecular basis of CPIs revealed by the complex structures, drug devel-
opers can gain better insights into understanding how to improve the design of candidate compounds, for the
purpose of enhancing binding specificities or avoiding side effects [6]. However, determining the atomic res-
olution structures of protein-ligand complexes through currently available experimental techniques, such as
X-ray crystallography [7], nuclear magnetic resonance (NMR) [8] and cryo-electron microscopy (cryo-EM)
[9], is still time-consuming in practice, resulting in only a limited number of solved structures [10]. There-
fore, a natural question arises: can computational virtual screening methods also provide useful mechanistic
insights about CPIs in addition to predicting their binding affinities?

Molecular docking (e.g., AutoDock Vina [11] and GOLD [12]) and molecular dynamics (MD) sim-
ulations [13] have been popularly used in virtual screening of compound-protein interactions [14]. These
methods have inherently good interpretability, as they can predict potential binding poses as well as binding
affinities. Despite a number of successful stories about the applications of these structure-based computa-
tional methods, they still suffer from several limitations. One major limitation lies in their heavy dependence
on the available 3D-structure data of the protein targets. In addition, these molecular docking and MD sim-
ulation based methods generally require tremendous computational resources.

To overcome the current limitations of the structure-based computational methods, a number of structure-
free models [15–21] have been developed for predicting CPIs. An example is the similarity-based methods
that take similarity matrices as descriptors of both compounds and proteins [15, 16]. These methods mainly
focus on the global similarities of entire compounds or proteins, while ignoring the detailed compositions of
each molecule. Conversely, deep learning based methods [17–19, 21] fully exploit the local features of input
compound structures and protein sequences to predict their binding affinities.

A fraction of these structure-free methods make use of neural attentions, which have been widely used
in the deep learning community to guide models to focus on those “important” features, and thus increase
the interpretability of their prediction results [22, 23]. For the CPI prediction tasks [17–19], attentions are
expected to be able to capture the local binding sites mediated by non-covalent interactions (e.g., hydrogen
bonds and hydrophobic effects) between compounds and proteins. Although these methods demonstrated
that real binding sites of compounds or proteins were enriched in their attention-highlighted regions in a few
examples, systematic comparison and evaluation on this learning capacity are still lacked, probably due to
the absence of benchmark datasets and evaluation standards. In this paper, we constructed the first bench-
mark dataset containing pairwise non-covalent interactions between atoms of compounds and residues of
proteins from more than 10,000 compound-protein pairs, and comprehensively evaluated the interpretabil-
ity of different neural attention based frameworks. Interestingly, tests on our constructed benchmark dataset
showed that current neural attention based approaches have difficulty in automatically capturing the accurate
local non-covalent interactions between compounds and proteins without extra supervised guidance.

Based on this observation, we proposed MONN, a Multi-Objective Neural Network, to learn both
pairwise non-covalent interactions and binding affinities between compounds and proteins. MONN is a
structure-free model that takes only graph representations of compounds and primary sequences of proteins
as input, with capacity to handle large-scale datasets with relatively low computational complexity. The
input information is processed by graph convolution networks and convolution neural networks (CNNs),
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but different from previous CPI prediction methods in the following aspects: 1) MONN uses a graph warp
module [24] in addition to a traditional graph convolution module [25] to learn both a global feature for
the whole compound and local features for each atom of the compound to better capture the molecular fea-
tures of compounds; 2) MONN contains a pairwise interaction prediction module, which can capture the
pairwise non-covalent interactions between atoms of a compound and residues of a protein with extra super-
vision from the labels extracted from available high-quality 3D compound-protein complex structures; and
3) in MONN, pairwise non-covalent interaction prediction result is further utilized to benefit the prediction
of binding affinities, by effectively incorporating the shared information between compound features and
protein features into the downstream affinity prediction module.

Comprehensive cross-validation tests on our constructed benchmark dataset demonstrated that MONN
can successfully learn the pairwise non-covalent interactions derived from high-quality structure data, even
using the 3D structure-free information as input. We also used an additional test dataset constructed from
the PDB to further validate the generalization ability of MONN. Moreover, extensive tests showed that
MONN can achieve superior performance in predicting CPI binding affinities, over other state-of-the-art
structure-free models. In addition, although the chemical rules, such as the correlation of hydrophobicity
scores between compounds and proteins and the preference of atom and residue types for hydrogen bonds
and π-stacking interactions, are not explicitly incorporated into the prediction framework, such features can
still be effectively captured by MONN.

In summary, the following contributions are made in this paper:
1. We combined the predictions of pairwise non-covalent interactions and binding affinities between com-

pounds and proteins into a unified machine learning problem, constructed the first large-scale bench-
mark dataset for this problem and systematically evaluated the interpretability of neural attentions on
this dataset.

2. We developed MONN, a novel deep learning framework to effectively extract molecular features from
3D-structure independent representations of compounds and proteins, and predict both the local atom-
level interactions (i.e., pairwise non-covalent interactions) and the global binding strengths (i.e., affini-
ties).

3. The comprehensive tests on the constructed benchmark dataset and validation datasets demonstrated that
MONN can outperform other state-of-the-art models in predicting binding affinities, and also accurately
capture the pairwise non-covalent interactions between compounds and proteins. These test results sug-
gested that MONN can provide a useful tool for effectively modeling CPIs both locally and globally,
and thus greatly facilitate the drug discovery process.

2 Methods
2.1 Problem formulation
MONN is an end-to-end neural network model with two training objectives. One objective is to predict
the non-covalent interactions between the atoms of a compound and the residues of its protein partner. To
describe the non-covalent interactions in a computational manner, we define a pairwise interaction matrix:
for a compound withNa atoms, and a protein withNr residues, their pairwise interaction matrix P is defined
as an Na × Nr binary matrix, in which each element Pij (i = 1, 2, ..., Na and j = 1, 2, ..., Nr) indicates
whether there exists a non-covalent interaction (1 for existence, 0 otherwise) between the i-th atom of the
compound and the j-th residue of the protein when forming a complex structure. The other objective is to
predict binding affinities (e.g., Ki, Kd or IC50), which can also be regarded as a global measurement of the
binding strength, between a protein and its ligand. Binding affinity can be denoted by a real number a ∈ R .

A chemical compound with Na atoms can be represented by a graph G = {V,E}, where each node
vi ∈ V (i = 1, 2, ..., Na), corresponds to the i-th atom in the compound, and each edge ei1,i2 ∈ E (i1, i2 ∈
{1, 2, ..., Na}) corresponds to a chemical bond between the i1-th and the i2-th atoms. A protein with Nr

residues can be represented by a string of its primary sequence, denoted by S = (r1, r2, ...rNr), where
each rj (j = 1, 2, ..., Nr) is either one of the 20 standard amino acids, or a letter ‘X’ for any non-standard
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amino acid. Given a graph representation of a compound and a string representation of a protein sequence,
our model is expected to output a predicted pairwise non-covalent interaction matrix P ∈ RNa×Nr and an
estimated affinity value a ∈ R.
2.2 The network architecture of MONN
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Fig. 1. The architecture overview of MONN. Given a compound-
protein pair, a graph convolution module and a convolution neural net-
work (CNN) module are first used to extract the atom and residue features
from the input molecular graph and protein sequence, respectively. Then,
these extracted atom and residue features are processed by a pairwise in-
teraction prediction module to derive the predicted pairwise interaction
matrix, which enables one to construct the links between atoms of the
compound and residues of the protein. Finally, an affinity prediction mod-
ule is used to integrate information from atom features, residue features
and the previously derived pairwise interactions to obtain the predicted
binding affinity.

Our model consists of four modules (Figs 1, S1-S4):
i) a graph convolution module for extracting the fea-
tures of both individual atoms and the whole com-
pound from a given molecular graph, ii) a convolu-
tional neural network (CNN) module for extracting
the features of individual residues from a given pro-
tein sequence, iii) a pairwise interaction prediction
module for predicting the probability of the non-
covalent interaction between any atom-residue pair
from the previously learned atom and residue fea-
tures, and iv) an affinity prediction module for pre-
dicting the binding affinity between the given pair
of compound and protein, using the previously ex-
tracted molecular features, as well as the derived
pairwise interaction matrix.
The graph convolution module The graph convolution module (Fig S1) takes the graph representation
G = {V,E} of a compound as input. More specifically, each node (i.e., atom) vi ∈ V is initially represented
by a feature vector vinit

i of length 82, which is the concatenation of one-hot encodings representing the atom
type, degree, explicit valence, implicit valence and aromaticity of the corresponding atom. Then, the initial
atom features are transformed into Rh1 (h1 is the hidden size) by a single-layer neural network:

v0
i = f(Winitv

init
i ), (1)

where f(·) stands for the leaky ReLU activation function f(x) = max(0, x) + 0.1 min(0, x), and Winit ∈
Rh1×82. Note that for all the single-layer neural networks in this paper, unless otherwise stated, f(·) stands
for the leaky ReLU activation function, Wx (x can be any subscript) stands for the learnable weight param-
eters, and the bias terms are omitted for clarity.

Each edge (i.e., chemical bond) ei1,i2 ∈ E is represented by a feature vector ei1,i2 of length 6, which is
the concatenation of one-hot encodings representing the bond type (single, double, triple or aromatic) and
other properties, e.g., whether the bond is conjugated and whether it is in a ring.

The atom features are then processed by L iterations of graph convolution to produce a set of updated
atom features {vL

i ∈ Rh1}Na
i=1 and a super node feature sL ∈ Rh1 , which is an overall feature representation

for the compound of interest. Note that the bond features are not updated during the whole process.
At each iteration of graph convolution, the atom features are sequentially updated using both a basic

message passing unit [25] and a graph warp unit [24]. The message passing unit executes the following two
steps to extract the local features from the given graph: gathering information and updating information.
During the first step (i.e., gathering information), each atom vi gathers local information tli from both its
neighboring atoms and bonds, that is,

tli =
∑

vk∈Neighbor(vi)

f(W l
gather[v

l−1
k , ei,k]), (2)

where i = 1, 2, ..., Na, l = 1, 2, ..., L, W l
gather ∈ Rh1×(h1+6), Neighbor(vi) stands for the set of neigh-

boring atoms of vi, vl−1
k represents the feature of atom vk from the (l − 1)-th layer, and [·, ·] stands for the

concatenation operation. In the second step (i.e., updating information), the gathered information and the
atom features learned from the previous iteration are then processed to obtain the updated features {ul

i}
Na
i=1

at each iteration l, that is,
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ul
i = f(W l

update[t
l
i,v

l−1
i ]), (3)

where i = 1, 2, ..., Na, l = 1, 2, ..., L, and W l
update ∈ Rh1×2h1 .

The graph warp unit [24] further improves the performance (the results of the corresponding ablation
studies are shown in Figs S5-S6) of graph convolution networks by introducing a super node s, which
captures the global feature for the compound of interest. Through information sharing between the super
node and all the atoms, distant atoms in the graph can communicate effectively and efficiently through
this super node, and thus a global feature can be extracted based on this technique [24]. More specifically,
this information sharing operation takes the atom features {ul

i}
Na
i=1 updated in current iteration l and the

super node feature sl−1 from the previous iteration l − 1 as input, and outputs both updated atom features
{vl

i}
Na
i=1 and super node feature sl. Details about the implementation of this graph warp unit can be found in

Supplementary Note S1.1.
After L iterations of graph convolution as described above, the final atom features {vL

i ∈ Rh1}Na
i=1 and

the super node feature sL ∈ Rh1 are generated and then fed into the downstream modules. In the remaining
part of this paper, we will drop the superscript L for clarity.
The CNN module The protein sequence is first encoded using the BLOSUM62 matrix [26], that is, the
initial feature of each residue is represented by the corresponding column of the BLOSUM62 matrix. The
features of non-standard amino acids are zero-initialized. We use this encoding strategy instead of the com-
monly used one-hot encoding scheme for protein sequences, mainly because the BLOSUM62 matrix is a
20× 20 matrix that has encoded the evolutionary relationships between amino acids, while the one-hot en-
coding scheme lacks such information. Then, the initial features are updated through typical 1-D convolution
layers [27] with a leaky ReLU activation function. The specific architecture of the employed convolution
neural network is determined by three hyper-parameters, including the number of convolution layers, the
number and the size of filters in each layer (Supplementary Notes S2.2). In the end, we obtain the final
output features {rj ∈ Rh1}Nr

j=1 for all the residues along the protein sequence (Fig S2).
The pairwise interaction prediction module To predict the pairwise interactions between a given compound-
protein pair, the pairwise interaction prediction module (Fig S3) uses the atom features {vi ∈ Rh1}Na

i=1 and
the residue features {rj ∈ Rh1}Nr

j=1 derived from the modules described above. The atom and residue fea-
tures are first transformed into a compatible space by two single-layer neural networks separately. Then, the
predicted probability of the interaction between an atom vi and a residue rj is derived based on the inner
product between the transformed atom and residue features, normalized by a sigmoid function:

Pij = σ(f(Watomvi) · f(Wresiduerj)), (4)

where i = 1, 2, ..., Na, j = 1, 2, ..., Nr, Watom,Wresidue ∈ Rh1×h1 , σ(·) represents the sigmoid function
σ(x) = 1

1+e−x , and · denotes the inner product.
The affinity prediction module The affinity prediction module (Fig S4) integrates information from not
only the previously learned atom features {vi}Na

i=1, the super node feature s and the residue features {rj}Nr
j=1,

but also the predicted pairwise interaction matrix P . Intuitively, P can be used to construct the links and
share information between atom and residue features, which may thus provide additional useful information
for predicting the binding affinity.

First, the atom features {vi}Na
i=1 and the super node feature s, as well as the residue features {rj}Nr

j=1,
are transformed into a compatible space for affinity prediction by single-layer neural networks:

hv,i = f(Wvvi), (5) hs = f(Wss), (6) hr,j = f(Wrrj), (7)

where Wv,Wr,Ws ∈ Rh2×h1 , and h2 is the size of hidden units in the single-layer neural networks used
in the affinity prediction module.

Next, we generate a fixed-size feature representation for each compound and protein, from a list of
transformed atom and residue features, using an attention mechanism that has been widely used to enhance
the performance of deep learning. In particular, the neural attention mechanism is introduced to weigh the
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contributions of features from individual atoms and residues, which has been proved to be more effective
than simply averaging all the atom and residue features (the results of the corresponding ablation studies
are shown in Figs S5-S6). The dual attention network (DAN) [28] is a recently published method that can
produce attentions for two given related entities (each with a list of features). For example, given an image
with a sentence annotation, DAN generates a textual attention for the word features of the sentence and a
visual attention for the spatial features of the image. Here, we modified the DAN framework by utilizing the
predicted pairwise interaction matrix to construct the direct links between atoms and residues. Information
passing is thus enabled by gathering features of interaction partners through such links for each atom of the
compound and each residue of the protein. The passed information is then incorporated into the calculation
of compound and protein attentions by DAN (Details can be found in Supplementary Note S1.2.).

Through the compound and protein attentions, the atom features and the residue features can be re-
duced into the fixed-size representations of the input compound graph (denoted by hc) and protein sequence
(denoted by hp):

hc =

Na∑
i=1

αv,ihv,i, (8) hp =

Nr∑
j=1

αr,jhr,j , (9)

where {αv,i ∈ R1}Na
i=1 and {αr,j ∈ R1}Nr

j=1 are compound and protein attentions generated by the modified
DAN.

Then, hc is concatenated with the transformed super node feature hs to obtain a combined representation
of the compound features (i.e., [hc,hs]). To explore the relationship between this combined representation
of the compound features and the representation of the protein features, we calculate their outer product,
normalized by a leaky ReLU activation function f , and then followed by a linear regression layer to predict
the binding affinity, that is,

a = Waffinity f(flatten([hc,hs]⊗ hp)), (10)

where ⊗ denotes the outer product, flatten(·) reshapes the result of the outer product into a column vector of
length 2h2

2, and Waffinity ∈ R1×2h2
2
.

2.3 Training
For a training dataset with N samples (i.e., compound-protein pairs), we minimize the cross-entropy loss
for pairwise non-covalent interaction prediction, which is defined as

LP =
1

N

N∑
n=1

N
(n)
a∑

i=1

N
(n)
r∑

j=1

−(P̂
(n)
ij logP

(n)
ij + (1− P̂ (n)

ij ) log(1− P (n)
ij )), (11)

where P (n)
ij and P̂ (n)

ij stand for the predicted probability and the true binary label of the interaction between

the i-th atom and the j-th residue in the n-th sample, respectively, and N (n)
a and N (n)

r stand for the total
number of atoms in the compound and the total number of residues in the protein in the n-th sample,
respectively.

For binding affinity prediction, the objective is to minimize the mean squared error, which is defined as

LA =
1

N

N∑
n=1

(a(n) − â(n))2, (12)

where a(n) and â(n) stand for the predicted affinity and the true affinity label for the n-th sample, respectively.
In a multi-objective training process, we aim to minimize the combination of two losses to further

enhance the binding affinity prediction, that is,
L = LA + λLP , (13)

where λ stands for a weight parameter controlling the contribution of Lp to the final affinity prediction.
During the training process, we used a mini-batch stochastic gradient descent scheme to optimize the model
parameters. A single MONN model can be trained within an hour on a Linux server with 48 logical CPU
cores and one Nvidia Geforce GTX 1080Ti GPU. More details about training and hyper-parameter calibra-
tion can be found in Supplementary Note S2.
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2.4 Construction of the benchmark dataset
Our benchmark dataset was constructed based on PDBbind v2018 [29, 30], which provides a high-quality
set of protein-ligand complexes with available structure data and corresponding binding affinities. For com-
plexes in the PDBbind dataset, we obtained their 3D structures from the RCSB PDB [10] and then extracted
the non-covalent interactions between compounds and proteins using PLIP [31]. After considering the atoms
types, distances and bond angles, PLIP recognized seven types of non-covalent interactions, i.e., hydrogen
bond, hydrophobic interaction, π-stacking, π-cation, salt bridge, water bridge and halogen bond. For the
identified atoms from the compounds and residues from the proteins which are involved in the non-covalent
interactions, we mapped their indices into the graph representations of compounds and protein sequences
derived from UniProt [32] to construct the corresponding pairwise non-covalent interaction labels. In total
we obtained 13,306 compound-protein pairs with binding affinity values, and 12,738 of them had corre-
sponding pairwise interaction labels. More details about the dataset construction process can be found in
Supplementary Note S3 and Fig S7.

3 Results
3.1 Systematic evaluation of the interpretability of neural attentions in CPI prediction models
A number of deep learning-based methods [17–21] have been developed previously for modelling compound-
protein interactions from 3D structure-free inputs. Despite their success in predicting binding affinities with
relatively low computational complexity, interpretability is still considered as a challenge for these structure-
independent methods. Several recent studies [17–19] sought interpretability by incorporating neural atten-
tions (i.e., weighing the contributions of individual elements in the given input to the final predictions) into
their model architectures. For example, Tsubaki et al. [17] developed an end-to-end neural network with
attentions for protein sequences, and they showed two examples in which their attention highlighted re-
gions were able to capture the real interaction sites in proteins. The method developed by Gao et al. [18]
involves both compound and protein attentions, and by visualizing the attention weights, the authors demon-
strated that their derived attention highlighted regions can successfully identify the interaction interface in
a compound-protein complex. DeepAffinity [19] reported an enrichment of true interaction sites in those
regions with high attention scores in protein sequences for several examples.

However, there are still some limitations in the previous studies about the interpretability of the deep
learning based CPI prediction methods. First, in these studies, the interpretability of neural attentions was
evaluated only through one or several examples, and not comprehensively assessed by a large-scale bench-
mark dataset. In addition, the evaluations were conducted only by visualizing the attention weights [17, 18]
or calculating the enrichment scores [19], thus lacking a unified standard for systematically evaluating the
interpretability of different attention-based models. More importantly, in these existing studies, attention
weights were mainly used to infer the positions of the interaction sites, but the exact matchings between
them (i.e., the pairwise interactions, as defined in Methods) still remain unknown.

To overcome these limitations, we conducted a systematic analysis to evaluate the interpretability of
the neural attentions. We first constructed a benchmark dataset containing labels of pairwise non-covalent
interactions for about 13,000 compound-protein complexes with available atom-resolution structures (also
see Methods and Supplementary Notes S3.1). The non-covalent interaction labels of a compound-protein
pair include a binary pairwise interaction matrix (as described in Methods), and the interaction sites derived
from this pairwise interaction matrix by maximizing over rows or columns (Fig S7). Then the interpretability
was evaluated from the following three aspects: the ability of attentions to capture the interaction sites in
compounds (at atom level), the interaction sites in proteins (at residue level), and the pairwise interactions
between compounds and proteins. For these binary classification problems, we mainly used the average
AUC scores (i.e., averaging over all the compound-protein pairs in the test data) for performance evaluation.
In addition, as in DeepAffinity [19], we also calculated the enrichment score, which was defined as the fold
change of the precision score of the trained model over the expected precision of random predictions (more
details on these metrics can be found in Supplementary Notes S4.1).
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Fig. 2. Average AUC scores (a-c) and av-
erage enrichment scores (d-e) for evaluat-
ing four neural attentions and MONN for
the prediction of interaction sites (atoms) in
compounds under the new-compound set-
ting (a,d), interaction sites (residues) in pro-
teins under the new-protein setting (b,e),
and pairwise non-covalent interactions be-
tween compounds and proteins under the
both-new setting (c,f). The mean values and
standard deviations over 10 repeats of cross-
validation with clustering threshold 0.3 are
plotted. The ratios of positive and negative
labels are about 1:1.44, 1:46.5 and 1:605 un-
der these three cross-validation settings, re-
spectively.

Four different types of neural attentions used in existing compound-protein interaction prediction models
were evaluated, including the method by Tsubaki et al. [17], the method by Gao et al. [18], the separate and
joint attentions proposed in DeepAffinity [19]. Details about the implementations of these neural attentions
can be found in Supplementary Notes S4.2. The attention weights were obtained after training the models
using the binding affinity labels, that is, without extra supervision from the pairwise interaction labels. The
clustering-based cross-validation procedure [33] was used during the training process, which ensures that
similar compounds (or/and proteins) in the same clusters were not shared between training and test sets.
Three cross-validation settings were used in the evaluation, including the new-compound setting, in which
the test compounds were never seen in the training process, the new-protein setting, in which the test proteins
were never seen in the training data, and the both-new cross-validation setting, in which both compounds and
proteins in the test data were never seen during training. More details about the cross-validation procedure
can be found in Supplementary Notes S2.1 and Fig S8.

Under different prediction tasks and cross-validation settings, all the four types of neural attentions
achieved average AUC and enrichment scores around 0.5 and 1, respectively, which were close to the scores
of random predictions (Fig 2 and Figs S9-S14). These results suggested that, although the attention high-
lighted regions and the real binding sites displayed accordance in some cases [17–19], they only showed
poor correlation in our comprehensive test on a large-scale dataset. Thus, it seems not possible to derive the
accurate predictions of non-covalent interactions between compounds and proteins from the attention-based
models trained using only binding affinities.
3.2 Performance evaluation on pairwise non-covalent interaction prediction by MONN with extra

supervision
Based on the above observation that neural attentions cannot automatically capture the non-covalent inter-
actions between compounds and proteins, we speculated that extra supervision information can be used to
guide our model to capture such local interactions. Instead of using attention mechanisms, MONN uses
an individual module (i.e., the pairwise interaction prediction module) to learn the pairwise non-covalent
interactions from given labels (Fig 1, Methods). Meanwhile, through marginalizing the predicted pairwise
interaction matrix, the predicted interaction sites in either compounds or proteins can also be derived.

The cross-validation settings and the metrics for evaluating our model were the same as described in
the previous section and Supplementary Notes S2.1. As shown in Fig 2, our model achieved average AUC
scores of 0.837, 0.763 and 0.821, and average enrichment scores of 1.63, 10.8 and 11.3 under the three
application settings, respectively. Note that the values of the enrichment scores were not comparable among
these three settings, due to the different ratios of positive-negative labels (Supplementary Notes S4.1). A
more comprehensive comparison test (Fig S9-S14) on our model and different neural attentions was per-
formed for different prediction goals, cross-validation settings, and clustering thresholds, which showed
that the predictions of MONN are effective and robust (average AUC scores decreased less than 5% with
the clustering threshold increasing from 0.3 to 0.6). These results suggested that, while the neural attentions
cannot interpret the non-covalent interactions, MONN is able to accurately predict such interactions between
compounds and proteins under different cross-validation settings.
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Fig. 3. Performance evaluation of MONN
on the additional test dataset. (a) The distri-
bution of AUC scores for all the compound-
protein pairs. Three example pairs ranked
around 10%, 50% and 90% in terms of AUC
scores for the pairwise interaction prediction
are shown in (b-d), respectively. For each ex-
ample pair, the numbers of occurrences of
the same pair, the compound and the pro-
tein in training data are listed, as well as the
AUC scores and the corresponding ranks for
the predicted pairwise interactions, the in-
teraction sites (atoms) in compounds, and
interaction sites (residues) in proteins. In
the compound structures, true labels and top
40% predicted interaction sites are marked
in red using RDKit [34]. In the protein se-
quences, the true labels and the MONN pre-
dicted scores for individual positions are
plotted.

To further examine the generalization ability of our model, we also validated MONN on an additional
independent dataset containing pairwise non-covalent interactions between compounds and proteins. As
our training data (i.e., the PDBbind dataset) included all the high-quality structures of compound-protein
complexes originally downloaded from the PDB [10] before 2018, we also constructed an additional test
dataset by collecting all the compound-protein complexes from the PDB with the release date from Jan 1st,
2018 to March 31st, 2019 (Supplementary Notes S3.2). In this extra test, MONN achieved average AUC
0.859 and average enrichment score 112.47 for the 1843 in predicting pairwise interactions of compound-
protein pairs on this additional dataset (Fig 3a).

To visualize the prediction results of our model, we selected three representative compound-protein pairs
ranked around 10%, 50% and 90% in terms of the AUC scores, and plotted the corresponding true labels and
the predicted interaction sites in the compound structures and protein sequences (Fig 3b-d). The example pair
ranked around top 10% was a tyrosine kinase inhibitor binding to TYK2 (Fig 3b, PDB ID: 6DBK) [35]. The
top 40% of the predicted interaction sites (atoms) in the compound covered all the true interaction sites, and
the high prediction scores were also appeared around the true interaction sites along the protein sequence.
The example pair ranked around the median prediction score contained a compound binding to KRAS (Fig
3c, PDB ID: 6FA1) [36]. The predicted interaction sites of the compound had several overlaps with true
interaction sites (5/8 recall), but also with several false positives. For example, the positively charged group
in the compound was predicted as an interaction site, which is actually located outside the binding pocket.
The predicted interaction sites (residues) of the protein had several overlaps with the true labels, but also with
a number of false positives. The example pair ranked around 90% was a ligand binding to rhodopsin (Fig
3d, PDB ID: 6FK7) [37]. The deviation of the predicted interaction sites from true labels in this example
was probably due to the scarcity of training data to support these predictions. These visualization results
demonstrated that the accuracies of MONN predictions were consistent with their corresponding rankings
in AUC scores. Overall, the above comprehensive validation tests supported the strong predictive power of
MONN.
3.3 Performance evaluation of binding affinity prediction by MONN with single- and

multi-objective learning
In this section, we examined the affinity prediction performance of MONN, and compared with other state-
of-the-art models. For the binding affinity prediction task, we separated our PDBbind-derived dataset into
two subsets, named IC50 (which contained IC50 values) and KIKD (which contained both Ki and Kd val-
ues). The main reason for such a separation was that IC50 values are generally dependent on experimental
conditions, and thus often considered noisier than the measured Ki and Kd values. Here, the IC50 dataset
with the new-compound setting and clustering threshold 0.3 was used for hyper-parameter calibration. More
details about training and hyper-parameter selection can be found in Supplementary Note S2.2.

We considered the following state-of-the-art baseline methods for comparison: the similarity-based ker-
nel method CGKronRLS [15], and the deep learning based methods, including DeepDTA [21], Tsubaki
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Fig. 4. Performance evalua-
tion on binding affinity predic-
tion on the IC50 dataset (a-
c) and the KIKD dataset (d-f).
Pearson correlations achieved by
MONN with single (denoted as
MONNsingle) or multiple (de-
noted as MONNmulti) training
objectives and four baseline meth-
ods, under three different cross-
validation settings and four dif-
ferent clustering thresholds are
shown. The mean values and stan-
dard deviations over 10 repeats of
cross-validation are plotted.

el al.’s method [17] and DeepAffinity [19]. As in the previous sections, MONN and baseline methods
were evaluated under three different settings of clustering-based cross-validation (i.e., new-compound, new-
protein and both-new), in terms of Pearson correlation (Fig 4) and root mean squared error (RMSE, Fig S15).
To investigate whether involving the extra supervision from the pairwise interaction labels can help predict
the binding affinities, we mainly tested MONN under two conditions: one was a single objective model,
denoted as MONNsingle, which used only the affinity labels as supervision information; the other was a
multi-objective model, denoted as MONNmulti, which considered both pairwise interactions and binding
affinities into the training objectives.

Our tests showed that both MONNsingle and MONNmulti generally outperformed other baseline meth-
ods in all the three cross-validation settings with different clustering thresholds, on both IC50 and KIKD
datasets (Fig 4). In particular, compared to the baseline methods, the multi-objective model (MONNmulti)
achieved an increase in Pearson correlation by up to 3.6% (average 2.3%). In addition, the multi-objective
model performed slightly better than the single objective one, which indicated that involving extra supervi-
sion information from pairwise interaction labels can further improve the binding affinity prediction.

Since compound-protein complexes generally have limited structural availability, we further tested our
model on a large-scale structure-free CPI dataset. To our best knowledge, among the baseline methods, only
DeepAffinity has been evaluated previously on a large dataset with more than 260,000 training samples
and more than 110,000 test samples, with the IC50 values derived from the BindingDB database [38]. We
followed DeepAffinity’s experimental settings and also tested MONN and DeepDTA on the same dataset.
Tsubaki et al.’s method and CGKronRLS are not suitable for this test mainly due to their limited scalabil-
ity in processing such a large dataset. To make a fair comparison, we also evaluated an ensemble version
(i.e., averaging predictions from several single models) of MONN on this BindingDB dataset, as in the
DeepAffinity paper [17]. As shown in Table S3, the ensemble version of MONN achieved the best Pear-
son correlation and RMSE on the BindingDB dataset. This comparison result suggested that, MONN can
achieve better performance than the state-of-the-art baseline methods even when the structure data is not
available. More details about this test can be found in Supplementary Notes S5.
3.4 MONN captures the global molecular property
From the perspective of chemical properties, the size, shape and hydrophobicity of a protein binding pocket
are essential for its interaction with a compound [39]. Information about the size and shape of a binding
pocket is usually hard to derive only based on raw sequences, so we mainly examined the hydrophobic-
ity of the potential binding residues predicted by MONN, through calculating the correlation between the
hydrophobicity scores of the entire compounds and the average hydrophobicity scores of the predicted in-
teraction sites (residues) in the proteins. Here, the hydrophobicity of the compound was measured by the
logP value calculated by RDKit [34], which is defined as the log ratio of the solubility of the compound in
organic solvent (e.g., 1-octanol) against water [40]. The hydrophobicity of the (predicted) interacting sites
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of a protein is defined as the average hydrophobicity score over the corresponding side chains [41]. Here, the
predicted interaction sites of proteins were selected from the top scored atom-residue pairs in the predicted
pairwise interaction matrix P , according to a cut-off value of mean(P ) + 3×std(P ), where std(·) stands for
the standard deviation.

The true interaction sites of proteins derived from the solved structures in the benchmark dataset showed
a certain level of correlation (Pearson correlation 0.487) in hydrophobicity with their ligands (Fig S16a).
As a control, no significant correlation can be observed from randomly chosen residues (Fig S16b). The
interaction sites of proteins predicted by MONN had similar correlations in hydrophobicity scores with
their ligands (0.515 from cross-validation and 0.499 from the additional test dataset, Fig S16c-d), close to
that of true labels.
3.5 MONN captures the chemical rules of non-covalent interactions
The rules of non-covalent interactions and the information of interaction types between compounds and
proteins are not explicitly incorporated into MONN. Nevertheless, we examined whether MONN can auto-
matically capture such chemical rules. In particular, here, we analyzed the preference of interaction partners
for the atoms which can form hydrogen bonds or π-stackings.

We first define the conditional likelihood score, which characterizes the preference of residues with
a specific property under given atom type of their interaction partners, that is, p(residue property=x|atom
property=y) = (Number of residues ∈ S(x) that interact with the atoms of property y)/(Total number of
residues interacting with the atoms of property y), where S(x) represents the set of residues whose side
chains contain at least one kind of elements satisfying the property x. Details about the calculation of this
conditional likelihood score can be found in Supplementary Notes S6.

A hydrogen bond forms between a hydrogen donor group and an acceptor group. When the atoms from
compounds are hydrogen-bond acceptors, the conditional likelihood of hydrogen-bond donor residues as
their interaction partners (0.63, calculated using true labels) is much higher than the control residues (0.38,
calculated using the randomly chosen residues, Fig S17a). The conditional likelihood scores calculated using
MONN predicted interaction sites were also relatively high (0.62 from cross validation and 0.64 from the
additional test, Fig S17a). Similarly, hydrogen-bond acceptor residues from the MONN prediction results
also had significantly higher conditional likelihood scores than the random control when their interaction
partners were the hydrogen-bond donor atoms from the compounds (Fig S17b). For π-stacking interactions
that occur between aromatic rings, similar conclusions can be drawn: MONN can capture the preference of
aromatic residues as interaction partners of aromatic atoms (detailed analysis can be found in Supplementary
Notes S6 and Fig S17c). In summary, the above results indicated that MONN can correctly capture the
preferred interaction partners for different types of atoms in the compounds, according to the possibility of
forming different kinds of non-covalent interactions.
4 Conclusion
Accurately predicting compound-protein interactions can greatly facilitate the drug discovery process. While
several deep learning based tools have been proposed to predict binding affinities and improve virtual high-
throughput screening, our approach MONN goes further to explore more about the mechanisms underlying
CPIs. In this work, we demonstrated that MONN can successfully predict the pairwise non-covalent interac-
tion matrices, which can also be used to infer the interaction sites in compounds and proteins. Comparison
tests showed that MONN can outperform other state-of-the-art machine learning methods in predicting bind-
ing affinities. Besides, the structure-free input of MONN allows it to have a wider range of applications than
those structure-dependent approaches. We also verified that the predictions of MONN are accordant with
chemical rules, in terms of the correlation in hydrophobicity between interaction sites in compounds and
proteins, and the preference of interaction partners for different atom types. All these results indicated that
MONN can provide a powerful and useful tool to advance the drug development process.
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