
Balancing Bounded Treewidth Circuits

Maurice Jansen⋆ and Jayalal Sarma M.N.⋆

Institute for Theoretical Computer Science,
Tsinghua University, Beijing, China.

Abstract. We use algorithmic tools for graphs of small treewidth to ad-
dress questions in complexity theory. For both arithmetic and Boolean
circuits, we show that any circuit of size nO(1) and treewidth O(logi n)
can be simulated by a circuit of width O(logi+1 n) and size nc, where
c = O(1), if i = 0, and c = O(log log n) otherwise. For our main construc-
tion, we prove that multiplicatively disjoint arithmetic circuits of size
nO(1) and treewidth k can be simulated by bounded fan-in arithmetic
formulas of depth O(k2 log n). From this we derive an analogous state-
ment for syntactically multilinear arithmetic circuits, which strengthens
the central theorem of [14]. As another application, we derive that con-
stant width arithmetic circuits of size nO(1) can be balanced to depth
O(log n), provided certain restrictions are made on the use of iterated
multiplication. Also from our main construction, we derive that Boolean
bounded fan-in circuits of size nO(1) and treewidth k can be simulated
by bounded fan-in formulas of depth O(k2 log n). This strengthens in the
non-uniform setting the known inclusion that SC0 ⊆ NC1. Finally, we
apply our construction to show that Reachability and Circuit Value
Problem for some treewidth restricted cases can be solved in LogDCFL.

1 Introduction

It is well-known that many hard graph theoretical problems become tractable
when restricted to graphs of bounded treewidth1. If a graph with n nodes has
bounded treewidth, there always exists a balanced tree decomposition of depth
O(log n). This yields NC-algorithms for many problems, which are known to be
NP-complete in general [6].

Consider the following question. Suppose one is given a circuit (Boolean or
arithmetic) of size s and bounded fan-in, for which the underlying graph has
bounded treewidth. Does this imply, as intuition might suggest, that there must
exist an equivalent bounded fan-in circuit of size poly(s) and depth O(log s)?
We show that in the Boolean case the situation is as expected, which yields the
following theorem:

⋆ This work was supported in part by the National Natural Science Foundation
of China Grant 60553001, and the National Basic Research Program of China
Grant 2007CB807900,2007CB807901. Email: maurice.julien.jansen@gmail.com,
jayalal@tsinghua.edu.cn.

1 For a definition see Section 2.

Theorem 1. The class of languages accepted by non-uniform constant fan-in
circuits of polynomial size and bounded treewidth equals non-uniform NC1.

Due to a celebrated result of Barrington [4], it is known that NC1 can be simu-
lated by constant width branching programs, which are skew circuits of constant
width. A constant width circuit can be evaluated using O(1) memory, and hence
SC0 = NC1 (SC0 is the class of Boolean functions computable by constant width
circuits of poly size, c.f. [13]). Theorem 1 strengthens this statement in the non-
uniform setting.

For arithmetic circuits, the short answer is that the equivalent circuit need
not exist: a depth O(log s) circuit of bounded fan-in computes a polynomial of
degree sO(1), but using repeated multiplication a bounded treewidth circuit of
size s can easily compute a polynomial of degree 2s. We rephrase the question
to avoid this triviality.

The class of families of polynomials {pn}n≥1 of polynomial degree with poly-
nomial size arithmetic circuits is known as VP (See e.g. [8]). In this paper, we let
VP[tw = O(logi n)] stand for the class corresponding to polynomial size circuits
of treewidth O(logi n). Let VNC1 denote the class corresponding to bounded
fan-in arithmetic circuits of depth O(log n), which due to Brent’s result [7] cor-
responds to poly-size arithmetic formulas. Our question becomes the following:
is VP[tw = O(1)] ⊆ VNC1 ?

One reason for considering this question, is that in case of an affirmative (and
effective) answer it could be a useful tool for circuit building. Namely, one could
during the design stage focus on using any of the well-known classes of bounded
treewidth, and be guaranteed a nicely balanced formula can be obtained after-
wards. Another reason, more on the complexity theoretic side, is that a flexible
parameter like treewidth contributes to obtaining a more refined structural un-
derstanding of the difference between formulas and circuits, since it provides
hierarchies of classes which bridge the two notions. Regarding this, it is a major
open problem whether VNC1 and VP are distinct. We only know of a separation
in the multilinear world, due to the result by Raz [17].

Considering the notion of restricted treewidth circuits will also shed some
light on issues regarding bounded width circuits. Arithmetic circuits of bounded
treewidth provide a common generalization of formulas and of circuits of bounded
width. One has the hierarchy of classes {VSCi}i≥0, where VSCi corresponds to
arithmetic circuits of width O(logi n) and size nO(1), for i ≥ 0. This hierarchy
is known to be sandwiched in between VNC1 and VP. We prove the following
(and the Boolean analogue):

Theorem 2.

1. VSC0 ⊆ VP[tw = O(1)] ⊆ VSC1.
2. VSCi ⊆ VP[tw = O(logi n)] ⊆ VSCi+1[size = nO(log log n)], for any i ≥ 1.

Arithmetic circuit width is a fundamental notion, but it is still ill-understood
in its relation to other resources. We currently do not know of any “natural”
problems characterized by bounded width arithmetic circuit classes. However,

as of recently, the notion has gained renewed attention from several researchers.
It more or less embodies a notion of space in the arithmetic setting (See [15]).
Mahajan and Rao [14] study the class VSC0[deg = nO(1)], which is obtained
from VSC0 by requiring formal degrees of circuits to be nO(1). Arvind, Joglekar,
and Srinivasan [2] give lower bounds for monotone arithmetic circuits of constant
width.

To make progress on the basic question whether VP[tw = O(1)] ⊆ VNC1, we
show that multiplicatively disjoint2 circuits of size nO(1) and bounded treewidth
can be simulated by bounded fan-in formulas of depth O(log n). In our notation
this is stated as follows:

Theorem 3. md-VP[tw = O(1)] = VNC1.

Notice that without the treewidth restriction multiplicatively disjoint circuits of
size nO(1) are known to compute all of VP [16]. From the above result, we de-
rive the analogous statement for syntactically multilinear circuits. The resulting
formulas will be syntactically multilinear (denoted with the prefix sm-) as well.
This implies the lower bounds by Raz [17] hold all the way up to syntactically
multilinear bounded treewidth circuits. We prove

Theorem 4. sm-VP[tw = O(1)] = sm-VNC1.

Theorem 4 strengthens the main result of Mahajan and Rao [14], which
states that poly size syntactically multilinear circuits of constant width can be
simulated by poly size circuits of log depth (but it was explicitly left open whether
the latter could be ensured to be syntactically multilinear). Considering the
more general notion of treewidth in a way simplifies the proof due to the help of
well-established algorithmic tools. We also remark that Theorem 3 strengthens
Theorem 4 in [10], which states that md-VSC0 = VNC1.

In [14] the fundamental question is raised whether VSC0[deg = nO(1)] ⊆
VNC1. As was mentioned, they show this holds under the restriction of syntactic
multilinearity. To make progress, we demonstrate a different restriction under
which an efficient simulation by arithmetic O(log n) depth formulas is achievable.
We apply Theorem 3 to give the following result for circuits with bounded iterated
multiplication chains (For a definition see Section 4):

Theorem 5. Constant width arithmetic circuits of size nO(1) with constant
bounded iterated multiplication chains can be simulated by fan-in two arithmetic
formulas of depth O(log n).

As two additional applications of the above results, we consider the Circuit
Value Problem (CVP) and the Reachability problem. Given the encoding
of a Boolean circuit C and an input x the Circuit Value Problem is to test if
C(x) = 1 or not. The general version of this problem is known to be P-complete.
Several variants of this has been studied (See [9, 3, 12] and the references therein).

Given a (directed or undirected) graph G = (V,E) and s, t ∈ V , reacha-
bility asks to test if t is reachable from s in G. reachability captures space

2 We indicate this with the prefix md-. See Section 2 for a definition.

bounded computation in a natural way. For directed graphs it is complete for
NL [11, 19]. The case of undirected graphs was settled recently by Reingold [18]
by giving a log-space algorithm for the problem. This shows the problem is com-
plete for L. There has been extensive research aimed at settling the complexity
of testing reachability on restricted graphs (see [1] and references therein).

LogCFL and LogDCFL are the classes of languages that are logspace many-
one reducible to non-deterministic and deterministic context-free languages, re-
spectively. LogDCFL can be also characterized as the class of languages that can
be recognized by a logspace Turing machine that is also provided with a stack,
which runs in polynomial time. It follows by definition that L ⊆ LogDCFL ⊆
LogCFL and L ⊆ NL ⊆ LogCFL. However, it is unknown how NL and LogDCFL
can be compared. In essense, this asks for a trade-off, trading non-determinism
with stack access. Given that directed reachability is an NL-complete problem,
giving a LogDCFL upper bound achieves such a trade-off for a restricted class
of NL-computations.

We prove the following theorem for the CVP and obtain a corollary for
Reachability.

Theorem 6. CVP for bounded treewidth and bounded fan-in circuits when the
input also contains the tree decomposition, is in LogDCFL.

Corollary 1. Reachability for directed acyclic graphs of bounded treewidth
and in-degree is in LogDCFL, provided the tree decomposition is given at the
input.

2 Preliminaries

We briefly recall basic circuit definitions. A Boolean circuit is a directed acyclic
graph, with labels {0, 1, x1, . . . , xn,∧,∨,¬} on its nodes. Nodes with label from
{0, 1, x1, . . . , xn} are called input gates, and designated nodes of zero out-degree
are called the output gates. The fan-in of a gate is its in-degree. Formulas are
circuits for which the out-degree of each gate is at most one. For size of a circuit
we count the number of non-input gates. The depth is measured as the length of
a longest directed path. Fan-in is assumed to be bounded. As in [14, 10], when
we speak about the width of a circuit, we assume the circuit is layered, and it
is taken to be the maximum number of nodes on a layer. Let us emphasize that
we allow input gates (constant or variable labeled) to appear at all layers. The
class NC1 is the class of boolean functions on n bits which can be computed
by boolean circuits of depth O(log n) and size nO(1). SCi denotes the class of
functions computed by polynomial size circuits of width O(logi n).

For arithmetic circuits over a ring R, nodes are labeled by ring constants,
formal variables from a set X, and {+,×}. We assume that the fan-in is bounded
by two. The output of an arithmetic circuit is a polynomial in the ring R[X],
defined in the obvious way. The size of a circuit is taken to be the number
of {+,×}-gates. For a circuit Φ with designated output gate f , the polynomial
computed by the output gate is denoted with ⌈Φ⌉. We denote the set of variables

used in Φ by V ar(Φ). Similarly we use V ar(p), if p is a polynomial. Note that
V ar(⌈Φ⌉) ⊆ V ar(Φ). We call a polynomial f multilinear in some subset of the
variables S, if the individual degree is at most one in f , for each variable in
S (even if f has a constant term). An arithmetic circuit is called syntactically
multilinear if for each multiplication gate the subcircuits originated at its inputs
carry disjoint sets of variables. For a multiplicatively disjoint circuit, for every
gate f = g × h, the sub-circuits rooted at g and h are disjoint (as graphs). The
formal degree of a circuit is defined inductively by taking variable and constant
labeled gates to be of degree one. For addition gates one takes the maximum
of the degrees of its inputs. For multiplication gates one takes the sum of the
degrees. The degree of the circuit is taken to be the maximum degree of a gate.

For a p-family of polynomials {fm}m≥1, we have fm ∈ R[x1, x2, . . . , xp(m)],
and deg(fm) ≤ q(m), for some polynomials p and q. Arithmetic circuit classes
contain p-families. VP and VPe are the classes of p-families computable by arith-
metic circuits and formulas, respectively, of size nO(1) (See e.g. [8]). For i ≥ 0,
VSCi is the class of all p-families computable by arithmetic circuits of width
O(logi n) and size nO(1). In [14] the class a-sSCi is considered, which corresponds
to width O(logi n) circuits of size and formal degree nO(1). We will denote this
class by VSCi[deg = nO(1)]. The class VNCi is the set of all p-families com-
putable by arithmetic circuits of depth O(logi n) and size nO(1).

Next we define various graph parameters. The width of a layered graph is
the maximum number of vertices in any particular layer. A tree decomposition
of a graph G = (V,E) is given by a tuple (T, (Xd)d∈V [T]), where T is a tree,
each Xd is a subset of V called a bag, satisfying 1)

⋃

d∈V [T] Xd = V , 2) For each

edge (u, v) ∈ E, there exists a tree node d with {u, v} ⊆ Xd, and 3) For each
vertex u ∈ V , the set of tree nodes {d : u ∈ Xd} forms a connected subtree of T .
Equivalently, for any three vertices t1, t2, t3 ∈ V [T] such that t2 lies in the path
from t1 to t3, it holds that Xt1 ∩ Xt3 ⊆ Xt2 .

The width of the tree decomposition is defined as maxd |Xd|−1. The treewidth
tw(G) of a graph G is the minimum width of a tree decomposition of G. For a
rooted tree T , let X≤t = ∪u∈St

Xu, with St = {u : u = t or t is an ancestor of u}.

Lemma 1. (Theorem 4.3 in [6]) Let G = (V,E) be a graph with |V | = n and
treewidth at most k. Then G has a tree decomposition (T, (Xd)d∈V [T]) of width
3k + 2 such that T is a binary tree of depth at most 2⌈log 5

4
n⌉.

The following proposition is left as an easy exercise:

Proposition 1. A leveled graph G of width k has treewidth at most 2k − 1.

3 Arithmetic Circuits of Bounded Treewidth

The treewidth of a circuit with underlying graph G is defined to be tw(G). Note
that a circuit has treewidth 1 if and only if it is a formula. We introduce the
class VP[tw = O(logi n)] as the class of p-families of polynomials {fn}n≥1 that
can be computed by fan-in two arithmetic circuits of size nO(1) and treewidth

O(logi n). As Theorem 2 states, these classes interleave (roughly) with the VSCi

classes. We postpone the proof of Theorem 2 as it uses developments of our main
construction.

Theorem 7. For any multiplicatively disjoint arithmetic circuit Φ of size s and
treewidth k, there exists an equivalent formula Γ of size at most sO(k2).

Proof. Let Φ be a multiplicatively disjoint circuit of size s, and let (T, (Xt)t∈V [T])
be a tree decomposition of Φ of width k. By Lemma 1, we can assume that T is
a rooted binary tree of depth d = O(log s). We first preprocess T and Φ using
Proposition 2 (Proof will appear in full version).

Proposition 2. For every circuit Φ of size s, that has a tree decomposition
(T, (Xt)t∈V [T]) of width k and depth d, there exists a circuit Φ′ of size at most
2s, for which ⌈Φ⌉ = ⌈Φ′⌉, with tree decomposition (T ′, (X ′

t)t∈V [T ′]) of width at
most k′ = 3k + 2 and depth at most d, so that for any t ∈ T ′, for any non-input
gate g ∈ X ′

t with inputs g1 and g2, either both g1, g2 ∈ X ′
t or both g1, g2 /∈ X ′

t.
In the latter case it holds that g1 /∈ X ′

≤t iff g2 /∈ X ′
≤t.

We assume wlog. that Φ and (T, (Xt)t∈V [T]) satisfy the conditions of Proposi-
tion 2, as the increase in k and s due to preprocessing does not affect the bound
we are aiming for. For any tree node t ∈ T and f ∈ Xt, we define a circuit Φt,
which is obtained from the subgraph Φ[X≤t], by turning all g ∈ Xt that take
both inputs from gates not in X≤t into input gates with label zg. For any f ∈ Xt,
let Φt,f be the subcircuit of Φt rooted at gate f . At most k + 1 new z-variables
will be used at the tree node t. Crucially, observe that, since Φ is multiplicatively
disjoint, any gate in Φt,f computes a polynomial that is multilinear in z.

We will process the tree decomposition going bottom up. At a node t, we
want to compute for each f ∈ Xt a formula Γt,f equivalent to Φt,f . Wlog. we
assume that the output gate of Φ is contained in Xr, for the root r of T . Hence,
when done, we have a formula equivalent to Φ. In order to keep the size of
the computed formulas properly bounded, we require a constant bound on the
number of appearances of a z-variable in Γt,f . We achieve this by brute-force
with Proposition 3, at the cost of blowing up the size by a factor of 2k+1. To
verify its correctness, observe that the lhs. and rhs. are multilinear polynomial
in F [x][z1, z2, . . . , zk+1] taking identical values on {0, 1}k+1, and hence must be
identical.

Proposition 3. For any f(x, z1, z2, . . . , zk+1) that is multilinear in z, we have

that f =
∑

b∈{0,1}k+1

(

∏

i∈[k+1](1 − zi)
1−bizbi

i

)

f(x, b1, b2, . . . , bk+1).

The recursive procedure for computing the desired formula equivalent to
Φt,f is given by Algorithm 1. Formally, for any t ∈ T , and f ∈ Xt, let Γt,f be
the formula output by the procedure call Traceback(t, f). The following lemma
proves its correctness:

Lemma 2. For any t ∈ T , and any f ∈ Xt, ⌈Γt,f⌉ = ⌈Φt,f⌉.

Proof. The proof will proceed by structural induction both on T and Φ. The
statement can be easily verified for the two base cases: if t is a leaf of T , or f is
an input gate in Φ. For the induction step, suppose t has children t0 and t1, and
say f = f0 ◦ f1, with ◦ ∈ {+,×}. We ignore line 17 of the procedure Traceback,
since it does not modify the output of the computed formula.

In case both f0, f1 ∈ Xt, by induction hypothesis, ⌈Γt,f0
⌉ = ⌈Φt,f0

⌉ and
⌈Γt,f1

⌉ = ⌈Φt,f1
⌉. Observe that in this case Traceback(t, f) returns Γt,f0

◦ Γt,f1
,

so ⌈Γt,f⌉ = ⌈Γt,f0
◦ Γt,f1

⌉ = ⌈Γt,f0
⌉ ◦ ⌈Γt,f1

⌉ = ⌈Φt,f0
⌉ ◦ ⌈Φt,f1

⌉ = ⌈Φt,f⌉.
Now assume not both f0, f1 ∈ Xt. By Proposition 2, this means f0 /∈ Xt and

f1 /∈ Xt. Furthermore, we either have f0, f1 ∈ X≤t, or {f0, f1}∩X≤t = ∅. In the
latter case, ⌈Φt,f⌉ = zf , which is exactly what is returned by Traceback(t, f).
In the former case, say f0 ∈ X≤ti1

and f1 ∈ X≤ti2
, for i1, i2 ∈ {0, 1}. Observe

that by the tree decomposition properties f ∈ Xti1
, which makes the call of

Traceback(ti1 , f) on line 11 valid. Note that f0 /∈ X≤ti2
and f1 /∈ X≤ti1

, if
i1 6= i2. Hence, by the tree decomposition properties, if i1 6= i2, there would
exist a node t′ with t1 as ancestor such that f, f0 ∈ Xt′ , but f1 /∈ Xt′ . Due to
Proposition 2 this case does not arise.

The algorithm first computes Γ = Traceback(ti1 , f). By the induction hy-
pothesis ⌈Γ ⌉ = ⌈Φti1

,f⌉. In Φti1
,f , whenever a gate g takes an input from a gate

not in X≤ti1
, i.e. by Proposition 2 this means both its inputs are not in X≤ti1

, it
appears as input node with label zg. However, for the circuit Φt,f node g roots
Φt,g. Observe that this means that substituting ⌈Φt,g⌉ for each zg ∈ V ar(⌈Φti1

,f⌉)
in ⌈Φti1

,f⌉ yields ⌈Φt,f⌉. Observe that the tree decomposition properties give us
that g ∈ Xt, whenever we make the call on line 13 to compute Γ ′, and hence that
this call is valid. By the induction hypothesis, ⌈Γ ′⌉ = ⌈Φt,g⌉. Hence replacing,
for all zg ∈ V ar(⌈Γ ⌉), each gate in Γ labeled with zg by the formula Γ ′ gives a
new formula Γ satisfying ⌈Γ ⌉ = ⌈Φt,f⌉.

We must bound the size of the formula Γt,f . The proof of the following lemma
will appear in the full version of the paper.

Lemma 3. Let t ∈ T be a node at height h, then for any f ∈ Xt, Γt,f has at

most αh2k+1 many gates, where α = 23k2+9k+6.

Since T has depth O(log s), we conclude the final formulas given at the root

of T will be of size sO(k2).

The proof of Theorem 3 is now clear. Trivially VPe ⊆ md-VP[tw = O(1)].
The converse follows from Theorem 7. Now use the fact that VPe = VNC1 [7].

3.1 Proof of Theorem 4

Observe that sm-VNC1 ⊆ sm-VPe ⊆ sm-VP[tw = O(1)]. For the other direction,
let Φ be a syntactically multilinear circuit of treewidth k. We first modify it
so that any gate g computing a field constant α is replaced by an input gate
g′ labeled with α. This can be done by removing edges fanning into g and

Algorithm 1 Recursive procedure for computing Γt,f

1: procedure Traceback(t ∈ T , f ∈ Xt)
2: if t is a leaf or f is an input gate in Φ then

3: return a formula equivalent to Φt,f of size at most 2k+1 computed by ’brute
force’.

4: else

5: let t0 and t1 be the children of t in T , and say f = f0 ◦ f1, with ◦ ∈ {+,×}.
6: if both f0 and f1 are in Xt then

7: let Γ = Traceback(t, f0) ◦ Traceback(t, f1).
8: else

9: // Neither f0 nor f1 is in Xt, by pre-processing.
10: If f0 and f1 are not in X≤t return a single node with label zf . Otherwise,

say f0 ∈ X≤ti1
and f1 ∈ X≤ti2

, for i1, i2 ∈ {0, 1}.
11: Γ = Traceback(ti1 , f).
12: for all zg ∈ V ar(⌈Γ ⌉) do

13: let Γ ′ = Traceback(t, g).
14: replace any gate in Γ labeled with zg by the formula Γ ′.
15: end for

16: end if

17: Process Γ to make any z-variable occur at most 2k+1 times using Proposition 3.
18: return Γ .
19: end if

relabeling. Hence the treewidth of the modified circuit is at most k. Next, any
gate g labeled with a field constant α, with edges going to gates f1, f2, . . . , fm,
is replaced by m separate copies of g1, g2, . . . , gm, each labeled with α, where
we add edges (gi, fi), for all i ∈ [m]. This does not increase the treewidth,
as it can be thought of as a two step procedure, neither of which increases
treewidth: first removing the vertex g and attached edges, secondly, adding back
the isolated copies. Observe that now we have obtained an equivalent circuit Φ′

that is multiplicatively disjoint. Namely, for purpose of contradiction, suppose
there exists a multiplication gate f = f1 × f2 such that both f1 and f2 are
reachable from some gate h. Then there exists such an h for which the paths
to f1 and f2 are edge disjoint. For this h, since Φ′ is syntactically multilinear,
there cannot be variables in the subcircuit Φ′

h. Hence h is a gate computing a
constant. Since the paths to f1 and f2 are edge disjoint, h must have out-degree
at least two. This contradicts the fact that any gate computing a constant in
Φ′ has out degree one. The statement sm-VP[tw = O(1)] ⊆ VNC1 now follows
from Theorem 7 and the fact that VPe = VNC1 [7].

To get the strengthened conclusion that sm-VP[tw = O(1)] ⊆ sm-VNC1, we
will now indicate how to modify Algorithm 1 to ensure syntactic multilinearity.
We use the notation of the proof of Theorem 7. Assume we have done prepro-
cessing as indicated above. We know each circuit Φt,f is syntactically multilinear,
for all t ∈ T , and f ∈ Xt. The goal is to establish inductively that each Γt,f is
syntactically multilinear, for all t ∈ T , and f ∈ Xt.

At the base case, i.e. line 3 of Algorithm 1, we can simply enforce the con-
dition by brute force. At line 7, by induction Γt,f0

and Γt,f1
are syntactically

multilinear. If ◦ = +, then so is Γ . In case ◦ = ×, whenever the formulas Γt,f0

and Γt,f1
share a variable α, since we know ⌈Γ ⌉ = ⌈Φt,f⌉ is multilinear, α does

not appear in at least one of the polynomials ⌈Γt,f0
⌉ and ⌈Γt,f1

⌉. Setting α to
zero in the corresponding formula ensures Γ is syntactically multilinear.

We now argue how to correctly deal with the substitution on line 14, and the
processing of z variables on line 17. Consider Γ as computed on line 11. We want

to ensure it is in the following standard form:
∑

a∈{0,1}k+1

(

∏

i∈[k+1] z
ai

i

)

fa(x),

for certain polynomials fa ∈ F [X]. For this we use the following modification
of Proposition 3, which is obtained by multiplying out the factors

∏

i∈[k+1](1 −

zi)
1−bizbi

i . For a, a′ ∈ {0, 1}k+1, we say a′ ≤ a iff {i : a′
i = 1} ⊆ {i : ai = 1}.

We denote the size of {i : a′
i = 1} by |a′|. We leave the proof of the following

proposition as an exercise:

Proposition 4. Let f(x, z1, z2, . . . , zk+1) be given that is multilinear in z. Write

f(x, z1, z2, . . . , zk+1) =
∑

a∈{0,1}k+1

(

∏

i∈[k+1] z
ai

i

)

coef(f, za1

1 za2

2 . . . z
ak+1

k+1), then

it holds that coef(f, za1

1 za2

2 . . . z
ak+1

k+1) =
∑

a′≤a(−1)|a|−|a′|f(x, a′).

If we use the above proposition to process z-variables on line 17, then by
induction, Γ on line 11 will indeed have the required form, or for simplicity one
can also assume we do an extra step of z-variable processing. That is, assume
we apply above proposition to get Γ in the required form. This requires at most
(2k+1)2 copies of Γ and blows up Γ by an inconsequential factor of 2O(k). Observe
that this leaves Γ syntactically multilinear.

Now consider line 14. First of all, any zg ∈ V ar(Γ)\V ar(⌈Γ ⌉) can be set
to zero in Γ . For the remaining z-variables, we claim that for any pair zg, zh ∈
V ar(⌈Γ ⌉), whenever Γt,g and Γt,h share a variable α, then coef(⌈Γ ⌉,m) = 0,
for any multilinear monomial m in the z-variables of Γ that contains both zg

and zh. Hence we can remove these terms from the standard form of Γ , and
avoid multilinearity conflicts among products between each of the substituted
formulas.

We will verify this claim using the notion of a proof tree. A proof tree rooted at
a gate g in a circuit C is any tree obtained by recursively selecting gates, starting
with g, as follows: 1) at an addition gate select exactly one of its children, and
2) at a multiplication gate select both children. We will consider proof trees of
Φti1

,f rooted at f . For a subset Z of z-variables in Φti1
,f , we let PTree(Z) stand

for the collection of proof trees rooted at f that have precisely the z-variables
in Z appearing at its leaves. Given T ∈ PTree(Z), let p(T) denote the product
of all X variables appearing in T . The following proposition is easily proved by
structural induction on the circuit Φti1

,f .

Proposition 5. For any multilinear monomial m in z-variables used in Φti1
,f ,

it holds that coef(⌈Φti1
,f⌉,m) =

∑

T∈PTree(Z) p(T), where Z is the set of z-

variables of m.

Recall that by induction ⌈Γ ⌉ = ⌈Φti1
,f⌉. Now consider any multilinear mono-

mial m in z-variables of ⌈Φti1
,f⌉ with both zg and zh in it, where Γt,g and Γt,h

share a variable α. For purpose of contradiction suppose coef(⌈Φti1
,f⌉,m) 6= 0.

By Proposition 5 this means there exists a proof tree in Φti1
,f rooted at f that

contains both zg and zh. This implies g and h are reachable from a single multi-
plication gate r in Φti1

,f , and hence also in Φt,f . Observe that our construction
satisfies the property that for any t ∈ V [T] and f ∈ Xt, V ar(Γt,f) ⊆ V ar(Φt,f).
Hence α appears in both Φt,g and Φt,h. Observe that both α’s must be reachable
from r in Φt,f . This contradicts the fact that Φt,f is syntactically multilinear.

Similarly, one can verify that whenever for a variable zg ∈ V ar(⌈Γ ⌉), the
formula Γt,g contains a variable α, then coef(⌈Γ ⌉,m) does not contain α for
any monomial m containing zg. Hence any occurrence of α in the formula
∑

a′≤a(−1)|a|−|a′|Γ (x, a′) used to compute coef(⌈Γ ⌉,m) can be replaced by zero.

We conclude that under above modifications, Algorithm 1 yields a syntac-
tically multilinear formula Γt,f equivalent to Φt,f . The proof is completed with
the observation of [14] that Brent’s construction [7], which shows VPe ⊆ VNC1,
preserves syntactic multilinearity.

3.2 Evaluation over a Finite Field and Boolean Implications

The observation is that Algorithm 1, when applied over GF (2) to an arbi-
trary n-input arithmetic circuit Φ, will result in a formula Γ such that for any
a ∈ GF (2)n, ⌈Φ⌉(a) = ⌈Γ ⌉(a). For this, no assumptions regarding the multiplica-
tive disjointness of Φ is needed. One can prove this condition using structural
induction similarly as in Lemma 2. For the processing of the z-variables on
line 17, observe that we have the following adaption of Proposition 3:

Proposition 6. Let f(x1, . . . , xn, z1, . . . , zk+1) be a polynomial over GF (2), and

let g =
∑

b∈{0,1}k+1

(

∏

i∈[k+1](1 − zi)
1−bizbi

i

)

f(x1, x2, . . . , xn, b1, b2, . . . , bk+1).

Then for any a ∈ GF (2)n+k+1, f(a) = g(a).

One can generalize this to an arbitrary finite field F of size q, by similarly
using brute force on line 17 of Algorithm 1 to make sure any z-variables appears
at most qk+1 times in Γ . Consequently, we have the following theorem:

Theorem 8. Let F be a finite field, and let q = |F |. For any arithmetic circuit
Φ over F of size s and treewidth k, there exists a formula Γ over F of size at
most sO(k2 log q) such that Φ and Γ evaluate to identical values for inputs in F .

A proof of the following proposition will appear in the full version.

Proposition 7. For every Boolean circuit C of fan-in two and treewidth k, there
is an arithmetic circuit C ′ over GF (2) of treewidth 3k such that ∀x ∈ {0, 1}n,
C(x) = 1 if and only if C ′(x) = 1.

Proof of Theorem 1 Given a Boolean circuit of size s and treewidth k of
bounded fan-in (wlog. assume fan-in two), first convert it into an arithmetic
circuit over GF (2) using Proposition 7. Now apply Theorem 8 to obtain an

arithmetic formula Γ over GF (2) of size sO(k2). Balance this formula down to
depth O(k2 log s) using [7]. Now do the reverse construction of arithmetization
and code out an {∧,∨,¬}-formula computing the same function. The final circuit
has depth O(k2 log s). Thus we have proven Theorem 1.

We can use a similar reduction to derive a Boolean analogue of Theorem 2.
The proof will appear in the full version of the paper. Let TWCi denote the
class of Boolean functions computed by Boolean circuits of treewidth O(logi n).

Theorem 9. The following two statements hold in the non-uniform setting: 1)
SC0 ⊆ TWC0 ⊆ SC1, and 2) ∀i ≥ 1,SCi ⊆ TWCi ⊆ SCi+1[size = nO(log log n)].

4 Constant Width Circuits

We make the following definition: an iterated multiplication chain of length ℓ in a
circuit Φ is given by a sequence of gates g0, g1, . . . , gℓ, where all are multiplication
gates, except possibly g0, such that both inputs of gi are reachable from gi−1,
for all i ∈ [ℓ]. We denote the length of a longest iterated multiplication chain
in Φ by M(Φ). Note that if M(Φ) = 0, then Φ is multiplicatively disjoint. The
following theorem will be proved in the full version of the paper:

Theorem 10. For any leveled arithmetic circuit Φ of size s and width w, there
exists equivalent formula of depth d = O(w4M(Φ) log s) and size at most 2d.

Theorem 5 immediately follows from Theorem 10. Note that conversely one
has the inclusion VNC1 ⊆ VSC0[M = O(1)], due to [5].

5 Application to Circuit Evaluation and Reachability

We use Proposition 7 to reduce the proof of Theorem 6 to the following propo-
sition. We note this reduction can be computed within logspace.

Proposition 8. Given an arithmetic circuit C over GF (2) together with its
tree decomposition (T, (Xd)d∈V [T]) of constant width k and an input x ∈ {0, 1}n,
testing whether C(x) = 1 can be done in LogDCFL.

Proofsketch. The proof proceeds by analyzing Traceback. We are given the circuit
C and an input x. We replace each gate of C labeled by xi with its Boolean value.
Next we run Traceback to compute an equivalent formula. We claim this can
be implemented in poly-time and O(log n) workspace, provided we use a stack
(whose space usage is not counted towards the space bound). This claim will be
substantiated in the paper’s full version.

A proof of following proposition will appear in the full version of the paper.
Corollary 1 follows from it.

Proposition 9. Given a DAG G = (V,E) of bounded treewidth and bounded
in-degree and s, t ∈ V , we can obtain a circuit C of bounded treewidth and an
input x such that C(x) = 1 if and only if t is reachable from s in the graph G.

References

1. E. Allender. Reachability problems: An update. In Computation and Logic in
the Real World, volume 4497 of Lect. Notes in Comp. Sci., pages 25–27. Springer
Verlag, 2007.

2. V. Arvind, P. Joglekar, and S. Srinivasan. On lower bounds for constant width
arithmetic circuits. Technical Report ECCC TR09-73, Electronic Colloquium in
Computational Complexity, 2009. To appear at ISAAC 2009.

3. D. Barrington, C.-J. Lu, P. Miltersen, and S. Skyum. On monotone planar circuits.
In IEEE Conference on Computational Complexity, pages 24–31, 1999.

4. D. M. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. In Proc. 18th Annual ACM Symposium on the
Theory of Computing, pages 1–5, 1986.

5. M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number
of registers. In Proc. 20th Annual ACM Symposium on the Theory of Computing,
pages 254–257, 1988.

6. H. L. Bodlaender. NC-algorithms for graphs with small treewidth. In in Proc.
14th Workshop on Graph-Theoretic Concepts in Comp. Sc. (WG’88), LNCS 344,
pages 1–10. Springer Verlag, 1989.

7. R. Brent. The parallel evaluation of general arithmetic expressions. J. Assn. Comp.
Mach., 21:201–206, 1974.

8. P. Bürgisser, M. Claussen, and M. Shokrollahi. Algebraic Complexity Theory.
Springer Verlag, 1997.

9. L. M. Goldschlager. The monotone and planar circuit value problems are logspace
comp lete for P. SIGACT News, 9(2):25–29, 1977.

10. M. Jansen and B. Rao. Simulation of arithmetical circuits by branching programs
with preservation of constant width and syntactic multilinearity. In Proceedings of
the 4th International Computer Science Symposium in Russia (CSR2009), volume
5675 of Lect. Notes in Comp. Sci., pages 179–190. Springer Verlag, 2009.

11. N. Jones. Space-bounded reducibility among combinatorial problems. J. Comp.
Sys. Sci., 11:68–85, 1975. Corrigendum J. Comp. Sys. Sci. 15:241, 1977.

12. N. Limaye, M. Mahajan, and J. Sarma. Upper bounds for monotone planar circuit
value and variants. Computational Complexity, 18(3):377–412, 2009.

13. M. Mahajan. Polynomial size log depth circuits: between NC1 and AC1. Technical
Report 91, BEATCS Computational Complexity Column, 2007.

14. M. Mahajan and B. Rao. Arithmetic circuits, syntactic multilinearity, and the
limitations of skew formulae. In Proc. 33rd International Symposium on Mathe-
matical Foundations of Computer Science, volume 5162 of Lect. Notes in Comp.
Sci., pages 455–466, 2008.

15. M. Mahajan and B. Rao. Small-space analogues of Valiant’s classes. In Proc. 17th
International Conference on Fundamentals of Computation Theory, volume 5699
of Lect. Notes in Comp. Sci., pages 455–466, 2009.

16. G. Malod and N. Portier. Characterizing valiant’s algebraic complexity classes. J.
Complex., 24(1):16–38, 2008.

17. R. Raz. Separation of multilinear circuit and formula size. In Proc. 45th Annual
IEEE Symposium on Foundations of Computer Science, pages 344–351, 2004.

18. O. Reingold. Undirected st-connectivity in log-space. In Proc. 37th Annual ACM
Symposium on the Theory of Computing, pages 376–385, 2005.

19. W. Savitch. Maze recognizing automata and nondeterministic tape complexity. J.
Comput. Syst. Sci., 7(4):389–403, 1973.

