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Abstract—To address the increasingly severe congestion prob-
lem in cellular networks, mobile operators are actively con-
sidering offloading the cellular traffic to other complementary
networks. In this paper, we study the online network selec-
tion problem in operator-initiated data offloading with multiple
mobile users, taking into account the operation cost, queueing
delay, and traffic load in different access networks (e.g., cellular
macrocell, femtocell, and Wi-Fi networks). We first design a
Delay-Aware Network Selection (DNS) algorithm based on the
Lyapunov optimization technique. The DNS algorithm yields an
operation cost within O

(
1
V

)
bound of the optimal value, and

guarantees an O (V ) traffic delay for any control parameter
V > 0. Next, we incorporate the prediction of users’ mobilities
and traffic arrivals into the network selection. Specifically, we
assume that the users’ locations and traffic arrivals in the
next few time slots can be estimated accurately, and propose a
Predictive Delay-Aware Network Selection (P-DNS) algorithm to
utilize this information based on a novel frame-based design. We
characterize the performance bounds of P-DNS in terms of cost-
delay tradeoff theoretically. To further reduce the computational
complexity, we propose a Greedy Predictive Delay-Aware Network
Selection (GP-DNS) algorithm, where the operator solves the net-
work selection problem approximately and iteratively. Numerical
results show that GP-DNS improves the cost-delay performance
over DNS, and reduces the queueing delay by roughly 40% with
the same operation cost.

I. INTRODUCTION

Cellular networks worldwide have been facing an unprece-

dented growth in mobile data traffic. As predicted by Ericsson,

the global mobile data traffic will increase by nearly 10-fold

between 2013 and 2019 [1]. To tackle such an explosive

growth in traffic volume, mobile data offloading, where the

traffic originally targeted for cellular network is delivered over

other complementary networks (such as Wi-Fi [2] or femtocell

[3]), is a cost-efficient solution to alleviate the increasingly

severe congestion problem in the cellular networks [2].

There are two main approaches in mobile data offloading,

namely user-initiated and operator-initiated offloading. In user-
initiated offloading, each mobile user decides on which net-

work (e.g., cellular or Wi-Fi) its device would connect to. In

operator-initiated offloading, the network operator monitors

the network condition, and decides on whether to offload
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the traffic of some users from the cellular network to the

other complementary networks. In fact, recent developments

in Hotspot 2.0 of Wi-Fi Alliance (WFA) and the access

network discovery and selection function (ANDSF) in the 3rd

Generation Partnership Project (3GPP) standard have reflected

the desire of the operators to implement the operator-initiated

offloading, where an operator has more control on the network

choices, the quality of experience of its subscribers, and its

own revenue. The detailed network selection policy, however,

is not specified in the Hotspot 2.0 and ANDSF standards, and

may be implemented differently by different operators. This

will be the focus of our study in this paper.

In this work, we consider the network selection problem

in the operator-initiated offloading scenario, where the traffic

arrivals and locations of mobile users vary over time. We

take into account the operation cost (e.g., the backhaul,

energy, and management cost [3], [4]), queueing delay, and

traffic load in different networks when optimizing the network

selection. Specifically, the operator, who has deployed several

access networks (e.g., cellular macrocell, femtocell, and Wi-Fi

networks), usually prefers to serve its users in a network with

the lowest operation cost. However, since some networks (es-

pecially femtocell and Wi-Fi networks) do not have ubiquitous

coverage, and the policy of serving users in low cost networks

may lead to a large delay for users who do not move around

very often. Hence, the operator needs to dynamically select

network for each user based on the network availabilities, the

user mobility, and the QoS requirement. We will focus on

designing an efficient online network selection policy, which

relies on limited or no information of the future, satisfies total

traffic demands of the users, and balances both the operation

cost and traffic delay.

In the first part of this paper, we apply the Lyapunov

optimization framework [5] to design an online Delay-Aware
Network Selection (DNS) algorithm, which does not require

any prior statistical knowledge of the traffic arrivals and

positions of the users. DNS yields an operation cost that can

be pushed arbitrarily close to the optimal value, at the expense

of an increase in the average user queueing delay.

Motivated by the recent advancement of accurate estimation

of user mobility [6] and traffic demands [7], in the second part

of this paper, we further improve the performance of DNS
by incorporating the prediction of users’ locations and traffic

arrivals into the network selection. Intuitively, with an accurate

predication of network information in the next few time slots,
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the operator is able to make a more precise network selection

decision, and achieve an even better cost-delay performance

than DNS. However, designing such a predictive network

selection algorithm is challenging. First, the state space grows

exponentially with the size of the information window. If

we try to analyze such a problem by dynamic programming,

the corresponding algorithm will become computationally

intractable due to the curse of dimensionality. Second, the

commonly used multi-slot Lyapunov optimization technique

in [8] is not applicable here. The reason is that, it potentially

increases the traffic delay, which is in conflict with our goal

of considering the delay-aware offloading.
Instead, we design a Predictive Delay-Aware Network S-

election (P-DNS) algorithm through a novel frame-based

approach. Different from the previous Lyapunov optimization

technique in [5], [8], we introduce a new controllable param-

eter θ into the algorithm design. By properly adjusting θ, we

can balance the variance of queue length within each frame,

and significantly improve the delay performance. We are able

to explicitly characterize the performance bounds of P-DNS
as functions of θ.

To further reduce the computational complexity of P-DNS,

we propose a Greedy Predictive Delay-Aware Network Se-
lection (GP-DNS) algorithm, where the operator solves the

optimization problem in P-DNS approximately and iteratively.

Our numerical results show that GP-DNS achieves a much

better cost-delay tradeoff than DNS, and the improvement

increases with the the prediction capability of the operator.
To the best of our knowledge, this is the first work that pro-

poses a network selection policy for the operator in a stochastic

multi-user data offloading scenario. The main contributions of

our work are as follows:

• Online operator-initiated offloading algorithms for multi-
ple users: We design online network selection algorithms

with and without predictive information on the traffic

arrivals and trajectories of the users.

• Novel frame-based predictive scheduling analysis: We

characterize the operation cost and queueing delay trade-

off theoretically under our novel frame-based predictive

network selection design.

• Performance improvement with prediction: Simulation

results show that GP-DNS improves the cost-delay per-

formance and reduces the queueing delay by roughly 40%

over DNS with the same operation cost.

Prior works have considered different aspects of the general

operations in data offloading. The work in [9] investigated

the optimal offloading strategy for a particular user based on

the tradeoff among the throughput, cost, and delay. Iosifidis

et al. in [10] analyzed a general offloading market, where

multiple cellular network operators compete in leasing the

access points for data offloading. Cheung et al. in [11] applied

the congestion game to study the equilibrium outcome of

users’ interaction in data offloading. However, to the best of

our knowledge, there has not been any prior work on the study

of network selection strategy in a stochastic multi-user data

offloading scenario.
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Fig. 1: An example of the system model, where user 1 and 2 are moving
within the set S = {1, 2, . . . , 9}. Some locations are only covered by the
cellular network (e.g., N3 = {1}), while some locations can access both the
cellular and Wi-Fi networks (e.g., N4 = {1, 2, 3}, N8 = {1, 3}). We use
Q1 (t) and Q2 (t) to denote user 1 and 2’s queue backlog, respectively.

In terms of the predictive scheduling, Huang et al. in [12]

proposed a predictive backpressure algorithm that predicts and

pre-serves the traffic arrivals. Here we consider the prediction

of both traffic arrivals and users’ locations, and do not consider

traffic pre-serving, hence propose a predictive algorithm that

is completely different from that in [12].

The rest of the paper is organized as follows. In Section

II, we introduce the system model. In Sections III and IV,

we study the non-predictive and predictive network selection,

respectively. We present the numerical results in Section V,

and conclude the paper in Section VI.

II. SYSTEM MODEL

We consider a slotted system, i.e. t ∈ {0, 1, . . .}, where

an operator serves L users in N networks. We use L =
{1, 2, . . . , L} to represent the set of users and use N =
{1, 2, . . . , N} to represent the set of networks. For each

network n ∈ N , we let μn be its capacity.1 We assume

that the availability of networks is location-dependent. Let

S = {1, 2, . . . , S} be the set of locations. We use Ns ⊆ N to

represent the set of available networks at location s ∈ S .2 We

illustrate the system model through an example in Figure 1.

A. Users’ mobilities and traffic arrivals

Users randomly move across the locations with random

traffic arrivals. Let Al (t) be the traffic arrival (measured in

bits) of user l ∈ L at time slot t. We assume that there

exists a constant Amax such that 0 ≤ Al (t) ≤ Amax for all

l ∈ L, t ≥ 0. Let Sl (t) ∈ S be user l’s location at time slot t.
In our model, we assume that both Al (t) and Sl (t) are random

for all l ∈ L and t. Hence, we use ωl (t) = (Al (t) , Sl (t)) to

denote the random event experienced by user l at time slot t,
and use ω (t) = (ωl (t) , ∀l ∈ L) to denote the random events

of the entire system at time slot t.

1We assume that the networks’ capacities are fixed, while it is easy to
generalize the results in this paper to the random capacity case through treating
μn (t) as a random event as ω (t) in Section II-A.

2In particular, the cellular network is assumed to cover all the locations.
For example, if we use n = 1 to represent cellular network, we will have
1 ∈ Ns for all s ∈ S.
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B. Network selection and transmission rate

At each time slot t, the operator makes the network selection

decision for all the users. We denote the decision by α (t) =
(αl (t) , ∀l ∈ L), where αl (t) is the network that user l is

connected to at time slot t. If the operator does not assign

user l to any network, then αl (t) = 0. Since the availability

of networks is location-dependent, we have

αl (t) ∈ NSl(t) ∪ {0} , ∀l ∈ L, t ≥ 0. (1)

User l’s transmission rate at time slot t is a function of the

network selection vector α (t), and we denote it by rl (α (t)).
We assume that rl (α (t)) is upper bounded by a positive

constant rmax:

0 ≤ rl (α (t)) ≤ rmax, ∀α (t) , l ∈ L, (2)

and satisfies

rl (α (t)) = 0, if αl (t) = 0. (3)

That is, when user l is not assigned to any network, its

transmission rate is zero.

We allow a general function of rl (α (t)) that satisfies (2)

and (3) in our analysis and algorithm design in Sections III

and IV. As an example, if users are homogeneous and the

capacity of a network is always evenly shared among all users

connected to the network [11], then user l’s transmission rate

at time slot t is given by

rl (α (t)) =
μαl(t)

mαl(t) (α (t))
, (4)

where mn (α (t)) = |{l′ ∈ L : αl′ (t) = n}| is the number of

users connected to network n ∈ N from the entire coverage

area of network n. Apparently, rl (α (t)) satisfies (2) and (3).

C. Queueing dynamics

Each user l has a data queue, and Ql (t) is the queue length

of unserved traffic at time slot t. Let Q (t) = (Ql (t) , ∀l ∈ L)
be the queue backlog vector. We assume that all queues are

initially empty, i.e.,

Ql (0) = 0, ∀l ∈ L. (5)

The queue length evolves according to the traffic arrival rate

and transmission rate as

Ql (t+ 1) = [Ql (t)−rl (α (t))]
+
+Al (t) , ∀l ∈ L, t ≥ 0.

(6)
Here [x]

+
= max {x, 0} indicates that the actual amount of

served packets cannot exceed the current backlog size.

D. Operator’s objective

The operator’s operation cost at time slot t is a continu-

ous function of the vector R (t) = (Rn (t) , n ∈ N ), where

Rn (t) �
L∑

l=1

1{αl(t)=n}rl (α (t)) is the total transmission

rate3 of network n at time slot t. The operation cost is non-

decreasing in each entry Rn (t). In order to simplify the

notation and emphasize the dependence of the operation cost

3Here 1{·} is the indicator function, which equals 1 if the event in the
brace is true, otherwise it’s zero.

on the network selection α (t), we use c (α (t)) to denote the

operation cost at time slot t. We assume that there exists a

constant cmax such that

0 ≤ c (α (t)) ≤ cmax, ∀α (t) . (7)

We allow a general function of c (α (t)) that satisfies (7)

in Sections III and IV. As an example, an explicit form of

c (α (t)) is

c (α (t)) =
N∑

n=1

unRn (t) =
L∑

l=1

uαl(t)rl (α (t)). (8)

In this example, we assume that the operation cost of each

network is linear in its total transmission rate, and we use un

to denote the unit operation cost of network n.

The objective of the operator is to design an online network

selection algorithm that minimizes the expected time average

operation cost, while keeping the network stable. This can be

formulated as the following optimization problem:

min c̄ � lim sup
t→∞

1

t

t−1∑
τ=0

E{c (α (τ))} (9)

subject to Ql � lim sup
t→∞

1

t

t−1∑
τ=0

E{Ql (τ)} < ∞, ∀l ∈ L,

(10)

variables αl (t) ∈ NSl(t) ∪ {0} , ∀l ∈ L, t ≥ 0, (11)

where (10) is the stability constraint.

III. NETWORK SELECTION WITHOUT PREDICTION

A. Delay-aware network selection

In this section, we assume that there is no prediction of

traffic arrivals and users’ mobilities, and propose the following

algorithm.

Delay-Aware Network Selection (DNS): At each time s-

lot t, the operator:

• Chooses the network selection vector α (t) that solves

min
[
−

L∑
l=1

Ql (t) rl (α (t))
]
+ V c (α (t)) (12)

variables αl (t) ∈ NSl(t) ∪ {0} , ∀l ∈ L. (13)

• Updates the backlog vector Q (t+ 1) according to (6).

Here, V is a positive parameter. The intuition behind DNS
can be understood through the following example. Consider

the special case where c (α (t)) is defined as in (8), then (12)

can be simplified as

min
L∑

l=1

rl (α (t))
(
V uαl(t) −Ql (t)

)
. (14)

Apparently, the operator will serve user l in network n only

if network n’s unit operation cost un < Ql(t)
V . Hence, if user

l’s queue backlog Ql (t) is small, the operator will wait for

a network with a low operation cost, e.g., Wi-Fi, to serve

user l. Since Ql (t) is small, suspending its traffic does not
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incur much delay. On the other hand, if Ql (t) is large, the big

“pressure” will push the operator to serve user l immediately,

even through a network with a high operation cost. Therefore,

DNS is able to balance the operation cost and the traffic delay.

B. Performance analysis of DNS
For the ease of exposition, we analyze the performance of

DNS by assuming that the random event ω (t) is independent

and identically distributed (i.i.d.) over slots. Notice that with

the technique developed in [13], we can obtain similar results

under Markovian randomness.
Let λl = E {Al (t)} be the mean traffic arrival rate

of user l ∈ L, and denote ω (t)’s state space by Ω =
{ω1,ω2, . . . ,ωJ}. Let πωj be the probability that ω (t) = ωj ,

j = 1, 2, . . . , J .
The following assumptions ensure that there exists a net-

work selection algorithm that satisfies the stability con-

straint (10). We assume that there exists a set of vectors

{α(ωj)
k }k=1,2,...,L+2

j=1,2,...,J with α
(ωj)
k satisfying (1) for all ωj ∈ Ω,

and a set of variables {ϕ(ωj)
k }k=1,2,...,L+2

j=1,2,...,J with
∑
k

ϕ
(ωj)
k = 1

and ϕ
(ωj)
k ≥ 0 for all ωj ∈ Ω and k, such that

λl −
∑
ωj

πωj

∑
k

ϕ
(ωj)
k rl

(
α

(ωj)
k

)
≤ −η (15)

for some positive η and all l ∈ L. (15) is commonly assumed

in the network stability problems [13]. The intuition is that,

we can find a stationary randomized algorithm (which chooses

action α
(ωj)
k with probability ϕ

(ωj)
k when ω (t) = ωj) such

that for any l ∈ L, the expected transmission rate of user l is

greater than its mean traffic arrival rate λl.
We define cDNS

av and QDNS
av as the long-term average op-

eration cost and average queue length of DNS, respectively.

Theorem 1 establishes the upper bounds of cDNS
av and QDNS

av .
Theorem 1: DNS achieves:

cDNS
av � lim sup

t→∞
1
t

t−1∑
τ=0

E{c (α (τ))} ≤ c∗av +
B
V , (16)

QDNS
av � lim sup

t→∞
1
t

t−1∑
τ=0

L∑
l=1

E{Ql (τ)} ≤ B+V cmax

η , (17)

where c∗av is the optimal expected time average operation cost

of problem (9)-(11) and B =
L(A2

max+r2max)
2 .

The proof is given in [14]. According to Little’s law, the av-

erage queue length is proportional to the average delay. Hence,

Theorem 1 implies that, by increasing parameter V > 0, the

operator can push the operation cost arbitrarily close to c∗av ,

at the expense of the increase in average traffic delay.

IV. NETWORK SELECTION WITH PREDICTION

In this section, we incorporate the prediction of users’

mobilities and traffic arrivals into the network selection deci-

sion. We firstly propose a Predictive Delay-Aware Network
Selection (P-DNS) algorithm, where the operator predicts the

future information, and makes the network selection decisions

in a frame-based manner. Then we propose a Greedy Predic-
tive Delay-Aware Network Selection (GP-DNS) algorithm

to further reduce the computational complexity.

A. The frame-based prediction and network selection model

We consider a frame-based structure, where the k-th (k ∈
{0, 1, . . .}) frame is defined as the time interval that contains

slots kT, kT+1, . . . , kT+T−1. We use T to denote the length

of each frame, and define Tk as the set of all time slots within

the k-th frame, i.e. Tk = {kT, kT + 1, . . . , kT + T − 1}.

We assume that at time slot t = kT , i.e. the beginning of the

k-th frame, the operator accurately predicts {ω (τ)}, τ ∈ Tk
(i.e. the knowledge of users’ mobilities and traffic arrivals for

the whole frame). With this information, the operator runs P-
DNS or GP-DNS algorithm at t = kT and makes the network

selection decisions {α (τ)}, τ ∈ Tk, for the entire k-th frame.

The structure is shown in Fig. 2.

Fig. 2: The Frame-Based Structure.

B. Predictive delay-aware network selection

We present P-DNS as follows:

Predictive Delay-Aware Network Selection (P-DNS): At

time slot t = kT , k ∈ {0, 1, . . .}, the operator:

• Chooses the network selection vectors {α∗ (τ)}, τ ∈ Tk,

that solve problem (18)-(20).

min

kT+T−1∑
τ=kT

(
L∑

l=1

Ql (τ)(Al (τ)−rl (α (τ))+θ)+V c (α (τ))

)

(18)

subject to Ql (τ) , τ ∈ Tk, evolves according to (6),
(19)

variables αl (τ) ∈ NSl(τ) ∪ {0} , ∀l ∈ L, τ ∈ Tk. (20)

• Updates the vector Q (kT + T ) according to (6).

Unlike DNS, P-DNS works in a frame-based manner. The

basic idea of P-DNS is to balance the average operation cost

and the average queue length of each frame. Besides V , we

introduce another positive controllable parameter θ in P-DNS,

which captures the variance of queue length within each frame.

The intuition is that, with θ, the transmission rates of the

earlier slots are assigned larger weights than those of the latter

slots within the frame. As a result, when the other conditions

are the same, serving users in the earlier slots within the

frame is better than serving them in the latter slots. This helps

to reduce the average queue length (or equivalently, average

traffic delay) of each frame. A detailed example that illustrates

such an intuition is given in [14].

C. Performance analysis of P-DNS

Similar to DNS, we characterize the performance of P-DNS
under the assumption that ω (t) is i.i.d. over slots and the

condition in (15) is satisfied.
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First, we define C (θ) as the optimal expected time average

operation cost of problem (9)-(11) with the mean traffic arrival

rate E {Al (t)} increasing from λl to λl + θ for all l ∈ L.

Apparently, we have

lim
θ→0

C (θ) = c∗av. (21)

Let cP-DNS
av and QP-DNS

av be the expected average operation

cost and average queue length yielded by P-DNS, respectively.

We state the following theorem (see [14] for proof).

Theorem 2: P-DNS achieves

cP-DNS
av � lim sup

t→∞
1

t

t−1∑
τ=0

E{c (α (τ))} ≤ C (θ) +
B

V
, (22)

QP-DNS
av � lim sup

t→∞
1

t

t−1∑
τ=0

L∑
l=1

E{Ql (τ)} ≤ B + V C (θ)

θ
, (23)

for any V > 0 and θ ∈ (0, η].
Note that P-DNS achieves similar performance bounds as

DNS. In particular, (a) when θ approaches 0, the bound for

the operation cost achieved by P-DNS is equal to that of DNS
in (16). That is,

lim
θ→0

(
C (θ) +

B

V

)
= c∗av +

B

V
, (24)

(b) When θ = η, the average queue length of P-DNS satisfies

QP-DNS
av ≤ B + V C(η)

η
≤ B + V cmax

η
, (25)

where the right bound is the same as the one specified in (17).

Since P-DNS operates in a larger time scale and the

decisions are made based on a joint consideration over the

whole frame, the actual gaps between the two sides of the

inequalities (22) and (23) are usually much larger than those

in (16) and (17). In other words, the actual cost-delay tradeoff

achieved by P-DNS can be much better than that by DNS.

D. Greedy predictive delay-aware network selection

We observe that in problem (18)-(20) the set of feasible

solutions has a size that is exponentially large in T . This

is due to the fact that the state space of the random events

grows exponentially with the size of the information window

T . To reduce the computational complexity of P-DNS, we

propose a greedy algorithm, GP-DNS, where the operator

solves problem (18)-(20) approximately.

The basic idea of the greedy algorithm is that, instead of

globally searching for the optimal solution in problem (18)-

(20), the operator iteratively updates the network selection

vectors for different time slots until the values of all vectors

converge. For example, when updating vector α (t), t ∈ Tk,

the operator treats all other vectors α (t′), t′ ∈ Tk, t′ 	= t, as

given constants, and chooses the feasible α (t) that minimizes

the objective function in (18).

The greedy algorithm is proposed as follows:

Greedy Predictive Delay-Aware Network Selection (G-
P-DNS): At time slot t = kT , k ∈ {0, 1, . . .}, the operator:

Algorithm 1 Greedy Network Selection for the k-th frame

Initialization:
Set i = 1 and initialize the network selection vectors for the k-th frame,
i.e. β1 (t) = 0, ∀t ∈ Tk;

Iteration:
1: while i = 1 or βi (t) �= βi−1 (t) for any t ∈ Tk do
2: for τ = kT to kT + T − 1 do
3: Update the network selection vector βi+1 (τ):
4: Number all feasible network selection vectors for time slot τ as

α1 (τ) ,α2 (τ) , . . . ,αM (τ);
5: for m = 1 to M do
6: Calculate the value of (18) under the network selection vec-

tors βi+1 (kT ) ,βi+1 (kT + 1) , . . . ,βi+1 (τ − 1), αm (τ),
βi (τ + 1) ,βi (τ + 2) , . . . ,βi (kT + T − 1);

7: end for
8: Choose βi+1 (τ) = α′ (τ), where α′ (τ) is the vector that

minimizes (18) in line 6 (If multiple vectors result in the same
minimum value, choose the vector with the smallest index m) ;

9: end for
10: i ← i+ 1;
11: end while
12: α∗ (t) ← βi (t) ,∀t ∈ Tk;
13: return α∗ (t) ,∀t ∈ Tk .

• Chooses network selection vectors {α∗ (τ)}, τ ∈ Tk,

according to Algorithm 1.

• Updates the vector Q (kT + T ) according to (6).

The condition for ending the iteration (line 1) is that all net-

work selection vectors converge, which is always achievable

as shown in the following lemma (see [14] for proof).

Lemma 1: In Algorithm 1, for any Q (kT ) and ω (t), t ∈ Tk,

there always exists a finite I such that for any i ≥ I we have

βi (t) = βI (t) , ∀t ∈ Tk.

V. NUMERICAL RESULTS

In this section, we compare the performance of DNS and

GP-DNS in terms of the average operation cost and the

average queue length. We also study the amount of data

offloaded under these two algorithms.

We simulate DNS and GP-DNS in MATLAB with |L| = 4
users, |N | = 8 networks, and |S| = 64 locations. In particular,

we use network 1 to represent the cellular network, which

has the highest data rate, 672 Mbps (4G HSPA+), and covers

all the locations. The other networks are Wi-Fi networks,

and the data rates are normally distributed random variables

with means equal to 150 Mbps (IEEE 802.11n) and standard

deviations equal to 50 Mbps. These Wi-Fi networks are ran-

domly distributed spatially. Each Wi-Fi network covers at most

four connected locations. We consider the transmission rate

function rl (α (t)) defined in (4) and operation cost function

c (α (t)) defined in (8). Markovian dynamics is used to model

users’ traffic arrivals and locations. We run the experiment for

100000 slots and obtain the following results.

In Figure 3, we plot the average operation cost against the

average queue length for DNS and GP-DNS. We obtain these

cost-delay tradeoff curves by varying V . As V increases, the

average operation costs of the network selection algorithms

approach the minimum value, while the average queue lengths

become larger. In (16), (17), (22) and (23), the upper bounds

for the optimality gap decrease with V , while the upper bounds
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for the average queue length increase with V , which are con-

sistent with our observations here. Comparing DNS with GP-
DNS, we observe that the curve of GP-DNS is always below

that of DNS, which implies that GP-DNS achieves a better

cost-delay tradeoff. Besides, such improvement increases with

the operator’s prediction capability.

In particular, we set the operation cost target as 240, 250,

260, and 270, find the corresponding average queue lengths

yielded by the algorithms in Figure 3, and show their relation

in Figure 4. In Figure 4, we plot the average operation cost

against the average queue length under different algorithms.

We observe that GP-DNS always yields a smaller queue

length than DNS, which means that GP-DNS has a smaller

average traffic delay than DNS. For example, when the oper-

ator pursues an operation cost of 270, GP-DNS with frame

size T=25 saves 40.4% delay over DNS, as shown in the last

group of bars. The reason is that, the predictive information

notifies the operator on whether there will be networks with

lower operation costs in the future slots, and whether it worths

delaying the users’ traffic. As a result, the network selection

decisions made in the predictive case are more delay-efficient.

In Figure 5, we compare the volumes of the traffic offloaded

to the Wi-Fi networks under DNS and GP-DNS, by plotting

the average queue length against the amount of the traffic

served in cellular/Wi-Fi network. We find that, when DNS
and GP-DNS yield the same average queue length, GP-DNS
always offloads more traffic than DNS. The reason is similar

to the one we explain in Figure 4, where future information

helps the operator to design a better network selection strategy

and results in more “successful” offloading.

VI. CONCLUSIONS

In this paper, we studied the online network selection

problem in the operator-initiated offloading with multiple
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users. We first proposed the DNS algorithm, which achieves a

close-to-optimal operation cost. We then proposed the P-DNS
algorithm and the GP-DNS algorithm by incorporating the

prediction of users’ mobilities and traffic arrivals in a frame-

based manner into the network selection. Simulation results

showed that the predictive information helps the operator

achieve a more efficient data offloading. We believe that the

improvement gained by the predictive algorithms depends on

the underlying system randomness (e.g., users’ mobilities and

traffic arrivals). We are interested in analytically characterizing

such a relation in our future work.
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