
Optimal Sleep-Wake Scheduling for Energy
Harvesting Smart Mobile Devices

Longbo Huang
longbohuang@tsinghua.edu.cn
IIIS, Tsinghua University

Abstract—In this paper, we develop optimal sleep/wake
scheduling algorithms for smart mobile devices that are powered
by batteries and are capable of harvesting energy from the
environment. Using a novel combination of the two-timescale
Lyapunov optimization approach and weight perturbation, we
first design the Optimal Sleep/wake scheduling Algorithm (OSA),
which does not require any knowledge of the harvestable energy
process. We prove that OSA is able to achieve any system
performance that is within O(ε) of the optimal, and explicitly
compute the required battery size, which is O(1/ε). We then
extend our results to incorporate system information into algo-
rithm design. Specifically, we develop the Information-aided OSA
algorithm (IOSA) by introducing a novel drift augmenting idea
in Lyapunov optimization. We show that IOSA is able to achieve
the O(ε) close-to-optimal utility performance and ensures that the
required traffic buffer and energy storage size are O(log(1/ε)2)
with high probability.

I. INTRODUCTION

According to a recent technology report [1], the number
of smart mobile devices is increasing very rapidly and will
soon exceed the world population. With the rapidly increasing
computing power, these mobile smart devices will become a
very important component of our daily computing resource.
However, the limited battery life has been one of the most
constrained resources of these new powerful devices [2].
To resolve this problem, efforts have been made to enable
the devices to “harvest” energy from the environment. For
instance, by converting ambient radio power into energy [3],
by converting mechanical vibration into energy [4], or by using
solar panels [5]. These new energy harvesting technologies can
likely be a remedy for the poor battery performance of smart
devices and greatly improve user experience.

However, to take full advantage of the energy harvesting
capability, efficient energy management algorithms for such
smart mobile devices must be developed. In this paper, we
consider the problem of constructing utility optimal sleep/wake
scheduling algorithms for a single smart mobile device system.
The system operates in frames which consist of multiple time
slots. In every frame, the device may receive external requests
for performing computing tasks, e.g., from the device user
or software applications. Besides fulfilling such computing

This work was presented in part at the 11th International Symposium and
Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless
Networks (WiOpt) 2013, Tsukuba Science City, Japan.

This work was supported in part by the National Basic Research Program of
China Grant 2011CBA00300, 2011CBA00301, the National Natural Science
Foundation of China Grant 61033001, 61361136003, 61303195, the China
youth 1000-talent grant.

demand, the system also supports a set of data flows for
applications. Thus, in every frame, the device first decides
whether to enter the sleep mode or to stay awake during the
frame. If it stays awake, in every time slot of the frame, it
determines how much computing demand to fulfill, how much
traffic to admit for the flows it supports, and how much power
to spend for packet delivery. If instead the node enters the
sleep mode, it turns off the transmission module and does not
respond to the external requests. The system receives utility
by delivering data but may suffer from disutility due to partial
fulfillment of the computing demand. The objective of the
node is to maximize the aggregate flow utility minus disutility,
subject to the constraint that the average data backlog is finite,
and that the “energy-availability” constraint is satisfied at all
time, i.e., the energy consumed is no more than the energy
stored. This “energy-availability” constraint greatly compli-
cates the design of an efficient scheduling algorithm, as the
current energy expenditure decision can cause energy outage
in the future and affect future decisions. Problems involving
such no-underflow constraints can in principle be formulated
as dynamic programs (DP) and solved optimally. However,
the DP approach requires substantial statistical knowledge
of the system dynamics, and often runs into the “curse-of-
dimensionality” problem when the state space is large.

There have been many previous works developing algo-
rithms for such energy harvesting systems. [6] develops al-
gorithms for a single sensor node for achieving maximum
capacity and minimum delay when the rate-power curve
is linear. [7] looks at the problem of designing energy-
efficient schemes for maximizing the decay exponent of the
queue length. [8] develops scheduling algorithms to achieve
close-to-optimal utility for energy harvesting networks with
time varying channels. [9] develops an energy-aware routing
scheme that approaches optimal as the network size increases.
[10] designs optimal control schemes for general multihop
energy harvesting networks. [11] considers a similar scenario
and handles compression. [12] constructs optimal sleep/wake
schemes for a single node system. [13] designs transmission
policies for energy harvesting sensors with time-correlated
energy supply. [14] and [15] apply the reinforcement learning
approach for solving the energy management problem for a
single sensor node and derive heuristic algorithms. However,
most of the aforementioned works assume that the nodes in
the system always remain “ON” and design power allocation
decisions, whereas in practice, nodes typically go through
sleep/wake cycles [16]. Hence, previous results do not consider

the two-timescale operation pattern of the nodes and are not
directly applicable to our problem.

We tackle this problem using two novel approaches. The
first approach combines the two-timescale Lyapunov opti-
mization technique developed in [17] and weight perturbation
developed in [18] and [19]. The idea of this approach is
to construct the algorithm based on a multi-slot Lyapunov
drift and carefully perturb the weights used for decision
making, so as to “push” the target energy level towards certain
nonzero values to avoid energy outage. Based on this idea, we
develop the Optimal Sleep/wake scheduling Algorithm (OSA)
for achieving optimal utility. OSA is an online algorithm which
makes greedy decisions every frame and does not require
any knowledge of the harvestable energy process. We show
that the OSA algorithm is able to achieve an average utility
that is within O(ε) of the optimal for any ε > 0, and only
requires an energy storage device that is of size O(1/ε).
We also explicitly compute the required storage capacity and
show that OSA also guarantees that the data traffic congestion
in the system is deterministically bounded by O(1/ε). Such
an explicit characterization is particularly useful for practical
implementations.

Our second approach extends the first one by introducing an
augmentation idea into Lyapunov optimization and leads to the
Information-aided OSA algorithm (IOSA). IOSA provides an
explicit way for incorporating system information into algo-
rithm design and demonstrates the potential benefits for doing
so. Different from OSA, IOSA relaxes the deterministic buffer
level guarantees but provides strong probabilistic bounds on
the energy outage events. We show that IOSA achieves the
similar O(ε) near-optimal utility performance while ensuring
that the required buffer sizes are O(log(1/ε)2) with high
probability.

Our paper is mostly related to the recent works [10], [11]
and [8], which use a similar Lyapunov optimization approach
for algorithm design. However, the problems there do not
consider the sleep/wake operation pattern of the nodes in the
system. Moreover, the algorithms developed there do not in-
corporate system information into control. Hence, the problem
considered in this paper can be viewed as a generalization of
problems studied in [8] and [10] for the single node case, and
requires a very different analysis from the typically Lyapunov
drift analysis adopted in [10] and [11]. Our work is also
very different from earlier works [20] and [21] as follows:
(i) [20] and [21] consider a static setting; whereas the system
can be highly dynamic here. (ii) the algorithm design and
performance analysis process in [20] and [21] relies on leaky-
bucket assumptions; whereas in our case, we allow general
control policies and explicitly characterize traffic delay. (iii)
[20] and [21] assumes that the node is always ON and focus
on power allocation; whereas we take into account the fact that
nodes can choose to enter the sleep mode or stay awake. Since
mobile devices typically consume significant power when it is
idle [22], always keeping the phone ON consumes much more
power compared to carefully putting it to sleep.

Our paper is organized as follows. In Section II we state our
system model and the objective. Section III presents the OSA
algorithm design procedure. The [O(ε), O(1/ε)] performance

Smart Mobile
Device

Computing Communication

Battery

Energy
Harvesting

Fig. 1. The system model. The smart mobile device provides computing and
communication services to device users or software applications.

results of the OSA algorithm are presented in Section IV.
Section V presents the IOSA algorithm and summarizes its
performance results. Simulation results are presented in Sec-
tion VI. We conclude our paper in Section VII.

II. THE SYSTEM MODEL

We consider a system that consists of a single smart mobile
device (called the node in the following), which provides
computing and communication services to device users and
software applications (Fig. 1). The node is powered by an
energy battery and is capable of harvesting energy from the
environment. Time is slotted, i.e., t ∈ {0, 1, 2, ...}, and is
divided in to frames of size T . For notation convenience,
we use Tm to denote the set of slots in frame m, i.e.,
Tm , [mT, ..., (m+ 1)T − 1].

A. The Demand State and Sleep/Wake Model
In each frame, the node can choose to either stay awake,

or enter the sleep mode. We model the sleep/wake decision
by 1w(mt), where mt = bt/T c. That is, 1w(mt) = 1 if the
node stays awake during the frame t belongs to. Otherwise
1w(mt) = 0. However, in some frames, the node may receive
external commands to perform certain tasks, e.g., a smartphone
user wants to perform certain computing task or a software
application requires some processing power.1 To model this
situation, we define a demand state χ(m), where χ(m) = 1
means that the node receives external requests to process jobs
in frame m, and χ(m) = 0 otherwise.

If χ(m) = 1, in every time slot t ∈ Tm, the node receives
an external power demand d(t) ∈ D, where D is the set of
possible demands and is assumed to be finite and discrete. We
then define dmax = max{d : d ∈ D}.2

After receiving the demand, the node decides how much
power to allocate to fulfil the demand. We model this by using
0 ≤ b(t) ≤ d(t) to denote the fulfilled amount. If the node
decides to enter the sleep mode in frame mt, then b(t) = 0
for all t ∈ Tmt

.3 Finally, we use

D(t) = D(1w(mt)b(t), d(t), χ(mt)) (1)

to denote the disutility incurred due to partial fulfilment of
the demand, which measures the “unhappiness” of the entity
requesting the power demand. An example of D(t) can be:

D(t) = aχ(mt)(1w(mt)b(t)− d(t))2, (2)

1Here we use frames to model the timescale at which users change their
usage behavior.

2We model all the external tasks purely by the power they consume.
3This can be done in the case when external demands are from users trying

to use the device. In this case, the node enters the sleep mode after having a
short “decision phase” at the beginning of every frame. During the decision
phase, the device negotiates with the demand requesting entity, e.g., users, to
perform demand response (a concept that has been getting increasing attention
and adoption in both the research community and industry, e.g., [23] and [24])
according to the battery level.

where a > 0 is a constant. We assume that d(t) = 0 and
D(t) = 0 if χ(m) = 0, i.e., if there is no external demand,
then there is no resulting disutility due to partial fulfilment. To
characterize the degree of flexibility, we use α > 0 to denote
the growth rate of the disutility, i.e., for any 0 ≤ b1, b2 ≤ d,
we have:

sup
d,χ
|D(b1, d, χ)−D(b2, d, χ)| ≤ α|b2 − b1|. (3)

That is, the disutility growth rate is no larger than α. Intu-
itively, a larger α implies that the user is less flexible in partial
fulfilment of the workload. Note that such partial fulfilment
can be viewed as the node performing demand response [25].
Such scenarios already exist in today’s smartphones, where the
devices remind the user about the energy level when receiving
computing commands.

In the following, we assume for simplicity that χ(m) is
i.i.d. every frame and let πχ = Pr

{
χ(m) = 1

}
. We also

assume that conditioning on χ(m), d(t) is i.i.d. every time
slot in a frame and is independent of everything else. We let
πd = Pr

{
d(t) = d

}
when χ(mt) = 1.

B. The Traffic Utility Model

Besides satisfying external power demands, the node also
provides traffic delivery service to a set of communication
flows (called commodities) denoted by C, e.g., file transfer
for different software applications.4 Then, in frames when the
node stays awake, the node decides how many commodity
c ∈ C packets to admit in every time slot. We use R(c)(t) to
denote the amount of new commodity c data admitted at time
t. We assume that 0 ≤ R(c)(t) ≤ Rmax for all c with some
finite Rmax at all time. Each commodity is associated with a
utility function U (c)(r). Each U (c)(r) function is assumed to
be increasing, continuously differentiable, and strictly concave
in r with a bounded first derivative and U (c)(0) = 0. We use
βc to denote the maximum first derivative of U (c)(r), i.e.,
βc = (U (c))′(0) and denote

β = max
c
βc. (4)

During frames when the node is in the sleep mode, we have
R(c)(t) = 0 for all time.

C. The Transmission Power Consumption Model

If the node stays awake in a frame, in order to deliver
the data to their destinations, the node allocates power for
data transmission over a wireless link, e.g., to the base
station. To capture the time-varying nature of the wireless link,
we denote S(t) the channel state of the node, e.g., fading
coefficient. We assume that S(t) takes values in some finite
set S = (s1, ..., sMs

), and assume in the following that the
pair of energy state (defined later) and S(t) is independent
and identically distributed (i.i.d.) every slot. We denote πs =
Pr
{
S(t) = s

}
. At every time slot, if S(t) = si and the node

stays awake, it chooses a power allocation value P (t) from
a feasible power allocation set P(si)

awake. We assume that P(si)
awake

4We only consider the case when the other major responsibility of the node
is serving data traffic. This traffic model can also be used to model computing
workload that are delay tolerant.

is compact for all si, and that every feasible power allocation
in P(si)

awake satisfies the constraint Pmin ≤ P (t) ≤ Pmax for
some Pmin > 0 and Pmax <∞. Here the Pmin constraint is to
capture the fact that the node will spend a considerable amount
of power compared to the sleep mode, even if it simply stays
idle and does nothing [22]. On the other hand, if the node
decides to enter the sleep mode, then P (t) = 0 for all t ∈ Tm.

Given the channel state S(t) and the power allocation value
P (t), the transmission rate is given by the rate-power function
µ(t) = µ(S(t), P (t)). For each si, we assume that the function
µ(si, P (t)) satisfies the following property.

Property 1: For any si and any P , we have for some finite
constant δ > 0 that:

µ(si, P) ≤ δP. 3 (5)

Property 1 states that the rate obtained over the link is upper
bounded by some linear function of the power allocated to it.
Such a property can be satisfied by most rate-power functions,
e.g., when the rate function is differentiable and has finite
directional derivatives with respect to power [26].

From the above, in particular, finite channel states and
compact power allocation set, we can see that there exists
some finite constant µmax such that µ(t) ≤ µmax for all time
under any P (t) and any channel state S(t). We also assume
that Rmax ≥ µmax. In the following, we use µ(c)(t) to denote
the rate allocated to the commodity c data at time t. It is easy
to see that at any time t, we have:∑

c

µ(c)(t) ≤ µ(t). (6)

D. The Energy Queue Model

The node is assumed to be powered by a battery. We model
the battery using an energy queue E(t), which measures the
amount of the energy stored in the battery at time t. We assume
that the node can observe its energy level E(t). In any time
slot t, the chosen actions must satisfy the following “energy-
availability” constraint for all time:5

b(t) + P (t) ≤ E(t). (7)

That is, the consumed power must be no more than what is
available.6

The node is also assumed to be capable of harvesting energy
from the environment, for instance, using solar panels [6]. To
model the dynamic nature of the harvestable energy, e.g., due
to mobility, we use h(t) to denote the amount of harvestable
energy at time t, and call it the energy state. We assume that
h(t) takes values in some finite set H = {h1, ..., hMh

} and
has an average rate of λh. We assume that the pair [h(t), S(t)]
is i.i.d. over slots (possibly correlated in the same slot), with
distribution π(h, s) and marginals πh, πs, respectively.7

5This condition assumes that the energy harvested at time t is assumed to
be available for use in time t + 1. Our results extend easily to allow using
the energy harvested in the same slot.

6We measure time in unit size slots, so that our power P (t) has units of
energy/slot, and P (t) × (1 slot) is the resulting energy consumption in one
slot.

7The energy state is assumed to change every time slot. This is different
from the sleep/wake action, which is done every frame. This distinction is
introduced to capture the fact that sleep/wake actions are often caused by
human users and thus the response timescale is in general longer.

We assume that there exists hmax < ∞ such that 0 ≤
h(t) ≤ hmax for all t. In the following, it is convenient for us
to assume the energy queue has infinite capacity, and that the
node can decide whether or not to harvest energy in each slot.
We model this harvesting decision by using e(t) ∈ [0, h(t)] to
denote the amount of energy that is actually harvested at time
t. Note here we assume that the energy harvesting action is
not affected by the sleep/wake mode of the node. Also note
that the introduction of e(t) is important because it enables the
development of low-complexity algorithms, which in turn help
us understand the key factors in the original energy harvesting
network control problem. In actual algorithm implementation,
one will run the same algorithm but always harvests energy,
i.e., e(t) = h(t). Then, the actual energy level is always no
less than that under the proposed algorithms (See Section III
for more explanations).

E. Queueing Dynamics

Let Q(t) = (Q(c)(t), c ∈ C), t = 0, 1, 2, ... be the data
queue backlog vector at the node, where Q(c)(t) is the amount
of commodity c data buffered. We see that the queue evolves
according to:

Q(c)(t+ 1) (8)

=
[
Q(c)(t)− 1w(mt)µ

(c)(t)
]+

+ 1w(mt)R
(c)(t),

with Q(c)(0) = 0 for all c ∈ C and [x]+ = max[x, 0]. In this
paper, we say that the system is stable if:

Q , lim sup
t→∞

1

t

t−1∑
τ=0

∑
c

E
{
Q(c)(τ)

}
<∞. (9)

Similarly, E(t) denotes the energy queue size. Due to the
energy availability constraint (7), we see that the energy queue
E(t) evolves according to the following:

E(t+ 1) = E(t)− 1w(mt)[b(t) + P (t)] + e(t), (10)

with E(0) = 0. 8 By using the queueing dynamic (10), we
start by assuming that each energy queue has infinite capacity.
We will show later that our first algorithm guarantees a de-
terministic energy storage bound, while the second algorithm
ensures that we only need a small energy storage size with
high probability.

F. Utility Maximization with Energy Management

The goal of the system is to design a joint sleep/wake
management, flow control, scheduling, and power allocation
algorithm, which first chooses the right sleep/wake decision at
the beginning of each frame. Then, at every time slot, admits
the right amount of data R(c)(t), fulfils the power demand
0 ≤ b(t) ≤ d(t) and chooses power allocation value P (t)
subject to (7), and transmits packets accordingly, so as to
maximize φ, the aggregate flow utility minus the time average
disutility, i.e.,

φ ,
∑
c

U (c)(t)−D(t), (11)

8E(0) = 0 means that we start with a zero energy level. We can also
pre-store energy in the energy queue and initialize E(0) to any finite positive
value up to its capacity. The results in the paper will not be affected.

subject to the system stability constraint (9).
Here U (c)(t) = U (c)(R(c)(t)) and the notation
x(t) , limt→∞

1
t

∑t−1
τ=0 E

{
x(τ)

}
. 9 Below, we call a control

policy that chooses 0 ≤ b(t) ≤ d(t), and P (t) ∈ PS(t)
awake

when 1w(t) = 1 and P (t) = 0 otherwise a feasible policy. A
feasible policy that ensures (9) is called a stabilizing policy.
We then use φ∗ to denote the optimal value of φ over all
stabilizing policies, i.e., φ∗ , supΠ φ

Π, where φΠ denotes
the average utility under a stabilizing policy Π. Note that
due to the finiteness of the battery size, one may not always
achieve the optimal value φ∗, which characterizes the optimal
system utility as the battery size goes to infinity. Nonetheless,
φ∗ provides an upper bound of the optimal utility.

G. Discussion of the Model

Although our model looks similar to the utility maximiza-
tion model considered in [10], the problem considered in
this paper is more challenging. The main complications are
imposed by the constraint (7) and the two-timescale opera-
tion mode of the node. Specifically, (7) couples the current
power allocation action and the future actions, and the two-
timescale operation mode couples the sleep/wake decisions
and the power allocation actions during the frames. Though
[10] resolves the energy-availability problem with a perturbed
max-weight approach, it assumes that each network node
is always active and focuses on designing power allocation
algorithms. This assumption may not closely capture the power
consumption profile of mobile devices. Indeed, according to
a recent study [22], a mobile device consumes much more
power in the idle mode than in the sleep mode. For example,
for a Nexus one phone, the phone consumes 24.9mW when
asleep, but it consumes 333.9mW when idle (phone call
only consumes 746.8mW). Thus, it is necessary to consider
sleep/wake scheduling for energy optimization. Moreover,
due to hardware constraints, a node typically remains in the
sleep/wake mode for a period that is relatively long compared
to the time required for packet transmission. Hence a two-
timescale model is required.

Since U (c)(t) = 0 whenever the node is asleep, the first
term

∑
c U

(c)(t) in the utility function (11) can intuitively
be viewed as optimizing the product of the fraction of time
when the node is awake and the flow utility achieved during
the awake period. Also, note that besides mobile devices,
our model also applies to modelling a wireless sensor system
powered by the energy harvesting technology. In that case, our
results can be adopted for power management in such systems.

Finally, we want to remark that the i.i.d. system dynamics
assumption is made only for the ease of algorithm and analysis
presentation. Our results can be proven under the more general
case where the system dynamics are Markovian, using the
variable-size drift analysis developed in [27].

Below, for reader convenience, we summarize the notations
in the paper in Table I.

III. STEERING THE QUEUES

In this section, we present our first algorithm, the Optimal
Sleep/wake scheduling Algorithm (OSA) for the problem.

9Throughout the paper, we assume that all limits exist.

Notation Meaning
Tm Frame m
χ(m) Demand state

h(t), e(t) Energy state and the amount harvested
πχ Probability of having state χ

1w(m) Sleep/Wake decision
b(t) Amount of workload fulfilled

U(c)(r) Flow c utility
D(t) Disutility
R(c)(t) Amount of type c traffic admitted
P (t) Power consumption

Q(c)(t), E(t) Data queue and energy queue

TABLE I
TABLE OF NOTATIONS

OSA is designed based on the two-timescale Lyapunov op-
timization technique developed in [17], combined with weight
perturbation [18]. The idea of OSA is to construct a multi-
slot Lyapunov scheduling algorithm with perturbed weights
for determining the control actions. Later in Section V, we
will extend the OSA algorithm by incorporating system infor-
mation into the algorithm.

A. The OSA Algorithm

To start, we first choose a perturbation value θ (to be spec-
ified later). Then, we define a perturbed Lyapunov function
as follows:

L(t) ,
1

2

∑
c∈C

[
Q(c)(t)

]2
+

1

2

[
E(t)− θ

]2
. (12)

The intuition behind the use of the θ value is that by keeping
the Lyapunov function value small, we “push” the E(t) value
towards θ. Thus, by carefully choosing the value of θ, we can
ensure that the energy queue always has enough energy when
the node is awake.

Now denote Z(t) = (Q(t), E(t)) and define a T -slot
conditional Lyapunov drift as follows:

∆T (t) , E
{
L(t+ T)− L(t) | Z(t)

}
. (13)

Here the expectation is taken over the randomness of the
demand state, the channel state and the energy state, as well as
the randomness in choosing the sleep/wake decisions, the data
admission action, the power allocation action, the scheduling
action, and the energy harvesting action. For notation simplic-
ity, we denote the instantaneous utility as:

f(t) ,
∑
c

U (c)(1w(mt)R
(c)(t)) (14)

−D(1w(mt)b(t), d(t), χ(mt)),

and the drift-plus-utility as:

∆T,V (t) , ∆T (t)−
t+T−1∑
τ=t

E
{
V f(τ) | Z(t)

}
. (15)

Here in (15), the V parameter is used to control the utility
performance of the algorithm. As we will see, V also deter-
mines the required capacity of the energy battery under OSA.
We first have the following lemma regarding the drift:

Lemma 1: Let t = mT , m ∈ {0, 1, 2, ...}. Then, under
any feasible sleep/wake action, data admission action, power
allocation action that satisfies the energy availability constraint

(7), scheduling action, and energy harvesting action that can
be implemented at time t, we have:

∆T,V (t) ≤ TB +

t+T−1∑
τ=t

E
{

(E(t)− θ)e(τ) | Z(t)
}

(16)

−
t+T−1∑
τ=t

E
{∑

c

[
V U (c)(1w(mt)R

(c)(τ))

−Q(c)(t)1w(mt)R
(c)(τ)

]
| Z(t)

}
−
t+T−1∑
τ=t

E
{∑

c

1w(mt)µ
(c)(τ)Q(c)(t)

+(E(t)− θ)1w(mt)P (τ) | Z(t)
}

+

t+T−1∑
τ=t

E
{[
V D(τ)− 1w(mt)(E(t)− θ)b(τ)

]
| Z(t)

}
.

Here B = Θ(1) is a constant defined in (47), which is
independent of the control parameter V . 2

Proof: See Appendix A.
Lemma 1 is a technical lemma that provides an upper bound

on the Lyapunov drift. Intuitively, the drift tells us how the
Lyapunov function value changes according to the actions. As
we will see below, the right-hand-side (RHS) of the upper
bound is the basis of our algorithm design and analysis.

We now present the OSA algorithm. The idea of the
algorithm is to minimize RHS of (16) subject to the energy-
availability constraint (7). For ease of presenting our algo-
rithm, we define the following function:

Dtot(mt) (17)

,
t+T−1∑
τ=t

[∑
c

[
V U (c)(R(c)(τ))−Q(c)(t)R(c)(τ)

]

+

t+T−1∑
τ=t

[∑
c

µ(c)(τ)Q(c)(t) + (E(t)− θ)P (τ)

]

−
t+T−1∑
τ=t

[
V D(b(τ), d(τ), χ(mt))− (E(t)− θ)b(τ)

]
.

Note that Dtot(mt) roughly denotes the controllable compo-
nents in the RHS of (16) when 1w(mt) = 1 (except for e(τ)).
We now have the algorithm as follows:

Optimal Sleep/wake scheduling Algorithm (OSA): Ini-
tialize θ (value to be specified). In frame mt, perform the
following:
• Sleep/Wake Decision (Every Frame): Observe χ(mt),
Q(c)(t) and E(t), solve:

max : E
{
Dtot(mt)

}
(18)

s.t. 0 ≤ R(c)(τ) ≤ Rmax, τ ∈ Tmt

P (τ) ∈ P(S(τ))
awake , 0 ≤ b(τ) ≤ d(τ), τ ∈ Tmt

Here the expectation is taken over d(t) and S(t), and
the control variables are the rates R(c)(τ), the power
allocation P (τ), and the computation fulfilment b(τ) and
the rates µ(c)(t). Denote the optimal solution by D∗tot.
Then, if

D∗tot > −E
{ t+T−1∑

τ=t

V D(0, d(τ), χ(mt))
}
, (19)

the node enters the awake mode, i.e., 1w(mt) = 1.
Otherwise it sets 1w(mt) = 0 and enters the sleep mode.
If the node enters the sleep mode, it sets R(c)(τ) =
P (τ) = b(τ) = 0 for every τ ∈ Tmt

. On the other
hand, if it enters the awake mode, it does the following
for traffic admission, power expenditure, and scheduling
for every τ ∈ Tmt

:
– Data Admission: Choose R(c)(τ) to be the optimal

solution of the following optimization problem:

max : V U (c)(r)−Q(c)(t)r, s.t. 0 ≤ r ≤ Rmax. (20)

– Power expenditure: Choose 0 ≤ b(τ) ≤ d(τ) to
minimize:

W (b(τ)) , V D(b(τ), d(τ), χ(mt))− (E(t)− θ)b(τ).

Define Q∗(t) , maxcQ
(c)(t). Then, choose P (τ) ∈

P(si)
awake to maximize:

G(P (τ)) , µ(τ)Q∗(t) + (E(t)− θ)P (τ), (21)

subject to the energy availability constraint (7).
– Scheduling: Let c∗ ∈ {c : Q(c)(t) = Q∗(t)}.

Transmit commodity c∗ packets with rate µ(τ), use
idle fill if needed.

Note that the data admission action, the power expen-
diture action, and the scheduling action are indeed the
actions that maximizes (18) given d(τ) and S(τ) for all
τ ∈ Tmt .

• Energy Harvesting (Every Slot): In every timeslot τ ∈
Tmt

, if E(t)−θ < 0, perform energy harvesting and store
the harvested energy during that frame, i.e., e(τ) = h(τ);
else set e(τ) = 0.

• Queue Update (Every Slot): Update Q(c)(τ) and E(τ)
according to the dynamics (8) and (10), respectively. 3

Equation (19) can be viewed as comparing the expected
“best” performance one can achieve by turning the node
ON, i.e., by setting 1w(mt) = 1 and optimizing the actions
accordingly, versus the performance one achieves by entering
the sleep mode, where all actions are 0. The intuition is
that, if by turning on the node, even in the best case, one
cannot outperform the sleep mode (in terms of the value of
Dtot(mt)), then the node should enter the sleep mode. Note
that in the energy harvesting step of OSA, the node will always
perform energy harvesting when the energy volume is less
than θ, and rejects the harvestable energy otherwise. Hence,
E(t) ≤ θ + Thmax for all t. This is an important feature.
It allows us to implement OSA with finite energy storage
capacity, i.e., use an energy storage size of θ+Thmax (below
we will assume that OSA is implemented with this energy
capacity). In practice, OSA will always harvest energy unless
the energy storage is full. It can be shown that in this case, the
actual energy we store will always be no less than that under
OSA. Hence, all the actions of OSA are valid.

B. Implementation of OSA

We note that OSA does not require any knowledge of the
energy state process h(t). This is very useful in practice when
knowledge of the energy source may be difficult to obtain.
However, we note that OSA does require estimation of the

channel state statistics and external demand statistics in order
to maximize (18). This is different from previous algorithms
for energy harvesting network control, e.g., [10]. In practice,
this can often be done via historic information. We will also
see in the simulation section that OSA can automatically adapt
to the environment when there is a distribution change. In
Section V, we develop an algorithm to explicitly take such
system information into account.

IV. PERFORMANCE ANALYSIS OF OSA

We now present the performance results of the OSA algo-
rithm. Below, recall that the parameter β is the largest first
derivative of the utility functions defined in (4) and that α is
the maximum growth rate of the disutility. The parameter θ is
defined to be:

θ , V (βδ +
β|C|Rmax

Pmin
+
αdmax

Pmin
) + δTRmax (22)

+T (Pmax + dmax).

Note that the value θ can easily be determined. It only
requires knowledge of the maximum derivatives of the utility
functions and the power-rate curve, and the maximum power
expenditure, and requires no statistical knowledge of system
dynamics, e.g., the channel and harvestable energy process. As
we will show later, (22) also provides us with an easy way to
size our energy storage devices for achieving a utility that is
within O(ε) of the optimal, i.e., use energy storage devices of
size O(1/ε). The sizing rule also demonstrates the relationship
between the energy storage capacity and the elasticity of the
external demand.

Theorem 1: Under the OSA algorithm with β and θ defined
in (4) and (22), we have the following:

(a) The data queues and the energy queue satisfy the fol-
lowing for all time:

0 ≤ Q(c)(t) ≤ βV + TRmax, ∀ c, (23)
0 ≤ E(t) ≤ θ + Thmax. (24)

Moreover, if at any time t, the node enters the awake
state, we must have E(t) ≥ T (dmax + Pmax).

(b) Under OSA, we have:

φOSA ≥ φ∗ − B

V
. (25)

Here φ∗ is the optimal time average utility of our
problem, and B = Θ(1) is defined in Lemma 1. 2

Here we present the proof for (23) and (24). The rest of the
proof will be given in Appendix B.

Proof: (Part (a)) First we see that Q(c)(0) = 0 for all
c ∈ C satisfies the bounds in (23). Suppose the bound holds for
Q(c)(t). We want to show that they also hold for Q(c)(t+ 1).
In the first case, suppose Q(c)(t) ≤ βV . Then, Q(c)(τ) ≤
V β+TRmax for all τ ∈ [t, t+T−1]. This is so because Rmax

is the maximum arrival rate in any time slot. Now suppose
βV < Q(c)(t) ≤ βV + TRmax. From the data admission rule
of OSA, we see that R(c)(τ) = 0 for all τ ∈ [t, t + T − 1].
Thus, Q(c)(τ) ≤ Q(c)(t) ≤ V β + TRmax.

Similarly, we see that whenever E(t) > θ, OSA will choose
e(τ) = 0 for τ ∈ Tmt

. Hence, E(t) ≤ θ+Thmax for all t.

Two remarks on Theorem 1 are in place. (i) By taking
ε = 1/V , Part (a) implies that the average data queue size
is O(1/ε). Combining this with Part (b), we see that OSA
achieves an [O(ε), O(1/ε)] utility-backlog tradeoff for our
problem. (ii) Part (a) shows that the energy queue size is
deterministically upper bounded by a constant of size O(1/ε).
Hence, our result provides an explicit characterization of the
size of the energy storage device needed for achieving a
desired utility performance.10

V. INFORMATION-AIDED ENERGY MANAGEMENT

In the previous sections, we have seen that OSA does not
require any knowledge of the energy arrival process h(t) and
achieves the [O(ε), O(1/ε)] utility-backlog tradeoff. However,
in practice, statistical knowledge can often be obtained, e.g.,
from history or runtime learning. In this case, it is important
to efficiently utilize such information. Thus, in this section,
we develop the Information-aided OSA algorithm (IOSA)
to incorporate the prior statistical information into system
control. Different from OSA, IOSA does not try to provide
deterministic bounds for the data and energy buffer sizes.
Instead, it guarantees that they are bounded by O(log(V)2)
with high probability.

A. Information-aided OSA

Suppose now we have access to all the statistical infor-
mation of the system, i.e., πχ, πd, πs, and λh. To construct
the IOSA algorithm, we consider the following optimization
problem.

max : V
∑
χ

πχνχT

[∑
c

U (c)(rcχ) (26)

−
∑
d

πdD(b(d)
χ , d, χ)

]
s.t.

∑
χ

πχνχT

[
rcχ −

∑
s

πsµ
c
s

]
≤ 0, ∀ c (27)

∑
χ

πχνχT

[∑
d

πdb
(d)
χ +

∑
s

πsP
(s)
χ

]
= Tλh (28)∑

c

µcs ≤ µ(s, P (s)
χ), ∀ s (29)

P (s)
χ ∈ P(s)

awake, ∀ s, P
(s)
χ = 0 if χ = 0 (30)

0 ≤ b(d)
χ ≤ d, ∀ d, and b(d)

χ = 0 if χ = 0 (31)
rcχ ∈ [0, Rmax] if χ = 1, and rcχ = 0 if χ = 0 (32)
νχ ∈ [0, 1]. (33)

This problem can be interpreted as follows. (i) The objective
function (26) represents the long term utility the system
achieves, where νχ denotes the awake probability under state
χ, and rcχ and b

(d)
χ denote the flow rate and the fulfillment

under condition χ and d. (ii) Constraints (27) and (28) then
specify that the service rate must be no smaller than the flow
arrival rate and that the energy usage rate must be no more than

10The problem of utility maximization under a pre-specified buffer size is
more challenging and is an interesting problem for future research.

the harvesting rate. (iii) Constraints (29)-(33) are the feasibility
conditions. Intuitively, solving (26) gives us a control policy
that can be used to control the system, under which νχ denotes
the probability to stay awake, and b(d)

χ , rcχ, and µcs denote the
corresponding actions used under different random states. 11

We now also define the dual function of (26):

g(γ, ξ) ,
∑
χ

πχ sup

{
νχTV

∑
c

U (c)(rcχ) (34)

−νχTV
∑
d

πdD(b(d)
χ , d, χ)

−νχT
∑
c

γc
[
rcχ −

∑
s

πsµ
c
s

]
−ξT

(
νχ
[∑

d

πdaχb
(d)
χ +

∑
s

πsP
(s)
χ

]
− λh

)}
.

Here the sup is taken over rcχ, µcs, b
(d)
χ , P (s)

χ , and µcs. Denote
(γ∗, ξ∗) an optimal solution of the dual problem, i.e.,

min : g(γ, ξ), s.t. γ � 0, ξ ∈ R. (35)

It is known from [27] that optimal value of the dual
function, i.e., g(γ∗, ξ∗) corresponds to the optimal system
utility. It is also known from [28] that (γ∗, ξ∗) = Θ(V) or
(γ∗, ξ∗) = 0. Moreover, it has been shown in [28] that, under
many Lyapunov-based online algorithms, the queue sizes will
be attracted to the optimal Lagrange multiplier of the dual
problem. Hence, the idea of IOSA is to first pre-compute
(γ∗, ξ∗), and then use the values to substitute the true backlog
required. With all the above definitions, we now present the
information-aided energy management algorithm.

Information-aided OSA (IOSA): Find (γ∗, ξ∗) by solving
(35). Then, run OSA with θ = 0 and with the following
modifications.

• In all steps of OSA, replace Q(c)(t) by Q̃(c)(t) ,
Q(c)(t) + γ∗c − log(V)2 for all c, and replace E(t) by
Ẽ(t) , E(t) + ξ∗ − log(V)2.

• At any time t, if the resulting b(t) and P (t) is such
that b(t) + P (t) > E(t), consume all power until
E(t) = 0. However, the node does not try to perform any
computation or transmission. If b(t) > 0, set b(t) = 0
and do not perform any computation. If P (t) > 0 and
the resulting rate for commodity c is µ(c)(t), drop all
µ(c)(t) packets. That is, still update Q(c)(t) according to
(8) but do not count the dropped packets. Also, update
E(t) according to:

E(t+ 1) =
(
E(t)− 1w(mt)[b(t) + P (t)]

)+
+ e(t). 3 (36)

A few remarks about the performance are in place. First,
note that with θ = 0, IOSA is not trying to avoid energy
underflow as in OSA. Instead, it treats the energy storage
as a normal queue and allows underflow events to happen.
However, it considers such moments as “stopping moments,”
in that the computing and transmitting actions are not actually
performed. Despite the fact that this can lead to packet

11Technically speaking, due to the possibly non-concave nature of the
disutility function and the possible need for time-sharing control actions,
solving (26) may not immediately give us an optimal policy. However, it
is sufficient for our algorithm design and analysis.

dropping as well as performance loss, doing so has the benefit
of being flexible in algorithm design. Moreover, one can show
that such halting events happen rarely under IOSA. Second,
replacing the backlog values with the augmented values is an
important and novel feature of IOSA compared to previous
algorithms developed in [10], [11] and [18]. The optimal
multiplier (γ∗, ξ∗) specifies how prior information can be
incorporated into system control. It turns out that with this way
of utilizing system information, one can significantly reduce
the required buffer sizes for both data and energy.

Note that we have assumed perfect statistical information
is given beforehand. When such information is not available,
IOSA can be implemented by dedicating some initial slots for
learning the distribution. We will see in the simulation section
that, even just with a moderate number of slots, IOSA can
achieve good performance and small queue size.

B. Performance of IOSA

In this section, we present the performance result of IOSA
under the following system structure property:

Definition 1: The system is called polyhedral with param-
eter ρ > 0 if for any (γ, ξ) with γ � 0 and ξ ∈ R, one
has:

g(γ, ξ) ≥ g(γ∗, ξ∗) + ρ‖(γ, ξ)− (γ∗, ξ∗)‖, (37)

under all V values. 3
Note that (37) typically holds when the system control

action set is a finite discrete set [28]. The requirement that
(37) holds for all V is also not restricted. In fact, it can be
shown that once it holds for any V > 0, it holds for all V
[28].

Theorem 2: Suppose that (γ∗, ξ∗) is the unique optimal for
g(γ, ξ), that the dual function is polyhedral with parameter
ρ = Θ(1) > 0, and that the set of possible queue values is
countable. Then, under IOSA with a sufficiently large V , we
have:

(a) The data queues and the energy queue satisfy the fol-
lowing:

Q(c)(t) ≤ O(log(V)2), ∀ c, E(t) ≤ O(log(V)2). (38)

Here x(t) , limt→∞
1
t

∑t−1
τ=0 E

{
x(τ)

}
. Moreover,

there exist constants H,K, p = Θ(1) such that in steady
state:

Pr
{
|E(t)− log(V)2| > H +Km

}
≤ pe−m. (39)

(b) Under IOSA, we have:

φIOSA ≥ φ∗ −O(
1

V
). (40)

Here φ∗ is the optimal time average utility.
c) The average rate of the dropped packets and the av-

erage disutility due to the modification steps are both
O(1/V

log(V)
2K). 2

Proof: See Appendix C.
It is important to notice the differences between Theorem 2

and Theorem 1. Under the IOSA algorithm, we do not provide
deterministic queueing bounds. However, the probabilistic
bounds (39) is strong in that the probability for E(t) to
deviate from log(V)2 decreases exponentially in the deviation

distance. Thus, for a large enough V values, energy outage
rarely happens, and the energy storage capacity does not need
to be large (see also Section VI for simulation results). Part c)
also guarantees that the average rate for the packet dropping
is very small, i.e., O(1/V

log(V)
2K), which is negligible even for

moderate V values. Different from the OSA case, here we
see that IOSA achieves the [O(ε), O(log(1/ε)2)] utility-delay
tradeoff with energy buffer size O(log(1/ε)2). This clearly
illustrates the benefit of utilitzing the statistical information of
the system dynamics. We also remark here that the analysis of
IOSA requires analyzing the combination of queue underflow
probability and drift augmentation, and cannot be done by
directly following the typical Lyapunov analysis adopted in
[10] and [11] due to the incorporation of (γ∗, ξ∗).

VI. SIMULATION

In this section, we simulate the algorithms. To make the
setting relevant, we choose our parameters to be normalized
versions of those given in [22] for Nexus one. Specifically, in
[22] it is shown that the Nexus one phone consumes 333.9mW
for idle, 322.4mW for audio, 746mW for phone call, 825mW
for cellular network, and 884.1mW for WiFi network. We
thus set the idle power to be 1, i.e, Pmin = 1. Then, we
also approximately normalize the audio power, the phone
call power and the network power to be 1, 2, and 3. Thus,
PONawake = POFFawake = {1, 2, 3}. Also, Pmin = 1 and Pmax = 3.

Each frame consists of T = 10 slots. In each frame, χ(m) =
1 with probability 0.6. When χ(mt) = 1, d(t) takes value
uniformly in {0, 1, 2, 3} every time. When χ(mt) = 0, d(t) =
0 for all t ∈ Tmt . The disutility is assumed to take the form
(2) with a = 1

9 , i.e.,

D(b(t), d(t), χ(mt)) =
1

9
χ(mt)(d(t)− b(t))2, (41)

which means α = 2/3. The channel state S(t) takes value in
{0, 1} equally likely. µ(t) = log(1 + 2S(t)(P (t) − Pmin)).
Hence we see that δ = 2. We assume that h(t) is also a
Bernoulli random variable, which takes value 2 with prob-
ability 0.5 and 0 otherwise. We assume there is only one
commodity and U(r) = log(1 + 2r),12 which means β = 2.
Also, R(t) ∈ [0, 2] and Rmax = 2.

With the above parameters, we set θ = 10V +
100. We simulate both OSA and IOSA for V ∈
{10, 20, 40, 80, 100, 150, 200}. The results are plotted in Fig.
2. We see that as the V parameter increases, the average
utility performance under both schemes increases and quickly
converges to the optimal. We also observe that the utility
performance of IOSA is very similar to the OSA at all V
values, despite the fact that under IOSA energy outage can
cause utility loss (the modification steps). Such a utility loss
vanishes when V is of moderate size, in which case energy
outage rarely happens, i.e., O(1/V

log(V)
2K).

We also see from the middle and right plots that the average
data queue size and the average energy level increases linear in
V under OSA, as per Theorem 1. On the other hand, they grow

12Such logarithmic functions are commonly adopted in network utility
maximization, e.g., [29].

0 50 100 150 200
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

V

0 50 100 150 200
0

20

40

60

80

100

120

140

160

V

0 50 100 150 200
0

500

1000

1500

2000

2500

V

OSA
IOSA OSA

IOSA
OSA
IOSA

Utility Data
Queue

Energy
Queue

Fig. 2. Average utility, average data queue size and average energy queue
size under OSA and IOSA.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

100

200

300

400

500

Time

OSA

IOSA

Energy Level

Fig. 3. A sample path energy level process from time 1 to 10000 under
V = 40.

only poly-logarithmically under IOSA, as shown in Theorem
2. This demonstrates the effect of information.

Fig. 3 shows two sample path energy level processes under
OSA and IOSA, respectively. To make the comparison fair,
we have run both algorithms under the same sequence of
random events and repeated the test multiple times to verify
its typicality. Here we also see that IOSA is very effective in
reducing the required energy storage capacity. This is enabled
by the introduction of γ̃ and ξ̃, which substitute the need for
building up the true energy level for decision making. We also
see from Fig. 3 that the maximum energy level is consistent
with our analytical results, i.e., Theorem 1 and 2.

We see that the energy level under OSA never goes below
zero and hence all the power expenditure actions are feasible.
It can also be verified that the energy level never exceeds the
bound in (24). Under IOSA, however, the energy level can
become zero. However, one can see that such events happen
rarely, as shown in Fig. 4. For instance, when V = 80, the
outage probability is only 0.002. This is consistent with Part
c) of Theorem 2.

Fig. 5 also shows how the sleep/wake decision changes in

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

V

Outage Probability

Fig. 4. A sample path energy level process from time 1 to 10000 under
V = 40.

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
450

460

470

480

490

500

510

Time

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
−0.5

0

0.5

1

1.5

Time

Sleep/Wake Decision

Energy Level

Fig. 5. A sample path energy level process and a sample path sleep/wake
decision process under V = 40 from time 1000 to 1500.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

0

20

40

60

80

100

120

140

Time

IOSA
OSA

IOSA
converges

IOSA
re−converges

OSA
converges

OSA
re−converges

Fig. 6. A sample path energy level process and a sample path sleep/wake
decision process under V = 150 from 105 slots.

reaction to the energy level change. We see that OSA is able to
adaptively decide its sleep/wake action without any statistical
knowledge of the harvestable energy process. We omit the
results for IOSA as they look very similar.

Moreover, to see how OSA and IOSA adapts to distribution
changes, we also conduct simulations where the distribution
is changed in the middle of the simulation. Fig. 6 shows that
both OSA and IOSA adapts very well to the change. Here we
choose to show the data queue size since the energy queue
size change is not very significant, due to the perturbation
approach, which pulls the energy queue size around θ (similar
to Fig. 3). In the simulation of IOSA, we use the first 200
slots of each distribution to learn the distribution. Under the
two distributions, we obtain that under OSA, the average total
utilities are 0.6423 for the first half and 1.0263 for the second,
whereas under IOSA, we get 0.59 and 0.9767, respectively.
It can be seen that the performance are similar. However,
IOSA achieves it with a much smaller queue size and faster
convergence (under both distributions). Here we also note that
the delay reduction is not as significant as in the perfect prior
information case. This is due to the error in learning and can
be improved by spending more time in learning.

We also look at the algorithm performance for more com-
plex settings. We consider a case where d(t) takes values
uniformly in {0, 1, ..., 5} every time slot, and that the energy
arrival can take any value in {n5 , n = 0, ..., 10}. Moreover,we
change the set of feasible power action to be PONawake =
POFFawake = [1, 3]. Our goal is to see how the algorithms perform
under more general settings. Fig. 7 shows the performance of
OSA and IOSA under this setting. It is not hard to see that the

0 50 100 150 200

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

V

0 50 100 150 200
0

20

40

60

80

100

120

140

160

V

0 50 100 150 200
0

500

1000

1500

2000

2500

V

OSA
IOSA

OSA
IOSA

OSA
IOSA

Data
Queue

Energy
Queue

Utility

Fig. 7. Average utility, average data queue size and average energy queue
size under OSA and IOSA with complex setting.

two algorithms still achieve near optimal performance, while
IOSA outperforms OSA in reducing queue sizes significantly.
This shows that indeed the two algorithms are quite robust
and can also apply to complex setting. The other results of
the two algorithms are similar to those in the previous setting,
and hence are omitted.

VII. CONCLUSION

In this paper, we develop two energy management algo-
rithms, i.e., the Optimal Sleep/wake scheduling Algorithm
(OSA) and the Information-aided OSA algorithm (IOSA), for
achieving optimal system utility for energy harvesting smart
mobile devices powered by batteries. OSA is an online algo-
rithm and does not require any knowledge of the harvestable
energy processes, whereas IOSA efficiently incorporates sys-
tem information into control algorithm design. We show that
OSA can achieve an [O(ε), O(1/ε)] utility-delay tradeoff with
an energy battery of O(1/ε) size. On the other hand, IOSA
achieves an [O(ε), O(log(1/ε)2)] utility-delay tradeoff and
guarantees that using energy storage capacity of O(log(1/ε)2)
ensures a very small energy outage probability.

APPENDIX A – PROOF OF LEMMA 1

Here we prove Lemma 1.
Proof: Squaring both sides of (8), summing over c ∈ C,

and multiplying both sides by 1
2 , we obtain:

1

2

∑
c

(
[Q(c)(τ + 1)]2 − [Q(c)(τ)]2

)
(42)

≤ 1

2

∑
c

(
[(R(c)(τ)]2 + [µ(c)(τ))]2

)
−1w(mτ)

∑
c

Q(c)(τ)
[
µ(c)(τ)−R(c)(τ)

]
.

Similarly, using (10), we have:
1

2

(
[E(τ + 1)− θ]2 − [E(τ)− θ]2

)
(43)

≤ 1

2
[b(τ) + P (τ)]2 +

1

2
[e(τ)]2

−(E(τ)− θ)[1w(τm)(b(τ) + P (τ))− e(τ)].

Now define:

B1 ,
1

2

[
|C|(R2

max + µ2
max) + (dmax + Pmax)2 + h2

max

]
. (44)

Then, by summing (42) over c ∈ C and (43), summing
over τ ∈ [t, t + T − 1], taking expectations on both sides

conditioning on Z(t), and using the definition of ∆T (t), we
have:

∆T (t) ≤ B1T (45)

−E
{ t+T−1∑

τ=t

∑
c

Q(c)(τ)1w(mt)[µ
(c)(τ)−R(c)(τ)] | Z(t)

}
−E
{ t+T−1∑

τ=t

(E(τ)− θ)
[
1w(mt)[b(τ) + P (τ)]− e(τ)

]
| Z(t)

}
.

Since all the queues in the system have bounded arrival and
service rates, for any t1 ≤ t2, we have:

Q(c)(t2) ≤ Q(c)(t1) + (t2 − t1)Rmax,

Q(c)(t2) ≥ Q(c)(t1)− (t2 − t1)µmax,

E(t2) ≤ E(t1) + (t2 − t1)hmax,

E(t2) ≥ E(t1)− (t2 − t1)(dmax + Pmax).

Using these inequalities in (45), we obtain that:

∆T (t) ≤ BT (46)

−E
{ t+T−1∑

τ=t

∑
c

Q(c)(t)1w(mt)[µ
(c)(τ)−R(c)(τ)] | Z(t)

}
−E
{ t+T−1∑

τ=t

(E(t)− θ)
[
1w(mt)[b(τ) + P (τ)]− e(τ)

]
| Z(t)

}
.

Here

B , B1 +
(|C|+ 1)(T − 1)

2

[
µ2

max +R2
max (47)

+h2
max + (dmax + Pmax)2

]
.

Adding to both sides the term −
∑t+T−1
τ=t E

{
V f(τ) | Z(t)

}
,

we obtain:

∆T (t)−
t+T−1∑
τ=t

E
{
V f(τ) | Z(t)

}
(48)

≤ BT −
t+T−1∑
τ=t

E
{
V f(τ) | Z(t)

}
−E
{ t+T−1∑

τ=t

∑
c

Q(c)(t)1w(mt)[µ
(c)(τ)−R(c)(τ)] | Z(t)

}
−E
{ t+T−1∑

τ=t

(E(t)− θ)
[
1w(mt)[b(τ) + P (τ)]− e(τ)

]
| Z(t)

}
.

Now using the definitions of ∆V,T (t) and f(t), and rearrang-
ing the terms, we see that the lemma follows.

APPENDIX B – PROOF OF THEOREM 1

In this section, we present the rest of the proof of Theorem
1. In our proof, we will make use of the following theorem,
which states that there exists a stationary and randomized pol-
icy (which does not take into account the energy-availability
constraint and may not be feasible in practice) that makes
sleep/wake decisions, allocates power and achieves optimal
utility.

Theorem 3: There exists a stationary and randomized pol-
icy Π that has the following structure: During each frame m, Π
keeps the node awake with certain probability. Then, the node

admits traffic, harvests energy, allocates power and schedules
packet transmissions purely according to some random func-
tions of the χ(mt), d(t), h(t), S(t) state. Finally, Π achieves
the following for all t = mT,m = 0, 1, ...

E
{ t+T−1∑

τ=t

fΠ(τ)
}

= Tφ∗ (49)

E
{

1Π
w (mt)

t+T−1∑
τ=t

[
µ(c)Π(τ)−R(c)Π(τ)

]}
= 0 (50)

E
{ t+T−1∑

τ=t

[
1Π

w (mt)[b
Π(τ) + PΠ(τ)]− eΠ(τ)

]}
= 0.2 (51)

Proof: One can first prove that the there exists a policy
that achieves (49), and achieves (50) with “≥” and (51) with
“≤,” using arguments similar to that in [26]. The theorem can
then be proven by noticing that one can always admit a little
bit more traffic (as Rmax ≥ µmax) and harvest a little bit less
energy.

Different from previous Lyapunov algorithm analysis, we
cannot directly compare the drift value under OSA with that
under the above policy. This is because the above policy
does not take into account the energy-available constraint
when making decisions, while OSA explicitly considers the
constraint and hence there may be correlations among actions.
Thus, our first step in the proof is to show that the energy-
availability constraint is indeed redundant under the OSA
algorithm. This step is critical for our analysis and allows
us to apply the Lyapunov drift analysis approach [17]. We
also note that the analysis here is different from the one in
[10]. This is because whenever the node stays awake, it will
consume at least TPmin power over a frame. Also, when
making the sleep/wake decision, the node actually does not
take into account the energy-availability constraint.

Proof: (Part (b)) We first show that whenever E(t) <
T (Pmax + dmax), OSA will put the node into the sleep mode.
This claim will then allow us to compare our algorithm with
alternative algorithms that chooses control actions without
taking into account the energy-availability constraint.

To prove the claim, consider a time t = mT and assume
that E(t) < T (Pmax + dmax). Let R(c)∗(τ), µ(c)∗(τ), P ∗(τ)
and b∗(τ), where τ ∈ Tmt , be the optimal solution of (18) for
the given E(t) and Q(t). Then, using (4), (5) and (23), we
have:

Dtot(mt) ≤ T |C|V βRmax (52)

+

t+T−1∑
τ=t

[
(V β + TRmax)δP ∗(τ) + (E(t)− θ)P ∗(τ)

]

−
t+T−1∑
τ=t

V D(0, d(τ), χ(mt)) +

t+T−1∑
τ=t

(E(t)− θ)b∗(τ)

+

t+T−1∑
τ=t

V
[
D(0, d(τ), χ(mt))−D(b(τ)∗, d(τ), χ(mt))

]
.

Using the definition of θ in (22), we see that

E(t)− θ + (V β + TRmax)δ < 0.

Hence, P ∗(τ) = Pmin for all τ ∈ Tmt
. Now since the

disutility increases no faster than α, i.e., (3), we get that:
t+T−1∑
τ=t

V
[
D(0, d(τ), χ(mt))−D(b(τ)∗, d(τ), χ(mt))

]
≤ V Tαdmax.

Using this and the fact that
∑t+T−1
τ=t (E(t) − θ)b(τ) ≤ 0 in

(52), we obtain:

Dtot(mt) ≤ −
t+T−1∑
τ=t

V D(0, d(τ), χ(mt))

+T |C|V βRmax + V Tαdmax + TPmin(V β + TRmax)δ

−TPmin

[
V βδ +

V β|C|Rmax

Pmin
+
V αdmax

Pmin
+ δTRmax

]
≤ −

t+T−1∑
τ=t

V D(0, d(τ), χ(mt)).

Hence, the node will enter the sleep mode according to OSA.
This shows that whenever the node stays awake, it has enough
energy for the whole frame. Thus, the energy-availability
constraint is indeed redundant in the OSA algorithm. Hence,
though OSA explicit considers the constraint (7) in the power
expenditure step, it remains the same even if the constraint is
removed.

Having established this property, we see from the control
rules that OSA minimizes the RHS of the drift inequality
(16) over all policies, including those that do not consider the
energy-availability constraint. Hence, the inequality remains
valid if we plug in any alternative control policy that makes
two-stage decisions. In particular, we plug in the policy Π in
Theorem 3 into (48) to get:

∆T (t)−
t+T−1∑
τ=t

E
{
V fOSA(τ) | Z(t)

}
≤ BT − V Tφ∗. (53)

Taking expectations over Z(t) on both sides, and taking a
telescoping sum over t = mT,m = 0, ...,M − 1, we have:

E
{
L(MT)− L(0)

}
−
MT−1∑
τ=0

E
{
V fOSA(τ)

}
(54)

≤ BMT − VMTφ∗.

Dividing both sides by MTV , taking a limit as M →∞, and
using the fact that E

{
L(0)

}
<∞, we have:

lim
M→∞

1

MT

MT−1∑
τ=0

E
{
fOSA(τ)

}
≥ φ∗ − B

V
.

Using the definition of f(τ), we get:

lim
M→∞

1

MT

MT−1∑
τ=0

E
{∑

c

U (c)(R(c)(τ))−D(τ)
}
≥ φ∗ − B

V
.

Thus, we conclude that:

φOSA =
∑
c

U (c)(R(c)(τ))−D ≥ φ∗ − B

V
.

This completes the proof of Part (b).

APPENDIX C – PROOF OF THEOREM 2

Here we prove Theorem 2. To do so, we need the following
theorem from [28].

Theorem 4: Suppose that (γ∗, ξ∗) > 0 is the unique
optimal for g(γ, ξ), that the dual function is polyhedral with
parameter ρ = Θ(1) > 0. Then, under OSA with θ = 0
(assuming that the energy queue can go negative), there exist
constants H = Θ(1) and η = Θ(1) > 0, such that whenever
||(Q(t), E(t))− (γ∗, ξ∗)|| > H ,

E
{
||(Q(t+ 1), E(t+ 1))− (γ∗, ξ∗)|| | Q(t), E(t)

}
(55)

≤ ||(Q(t), E(t))− (γ∗, ξ∗)|| − η.
Proof: See [28].

Now we present the proof of Theorem 2.
Proof: (Theorem 2) (Part a)) Note that IOSA can be

viewed as OSA with θ = 0 and that the effective queue
sizes being Q̃(t) and Ẽ(t). Therefore, using (55), we see that
whenever ||(Q̃(t), Ẽ(t))− (γ∗, ξ∗)|| > H , we have:

E
{
||(Q̃(t+ 1), Ẽ(t+ 1))− (γ∗, ξ∗)|| | Q̃(t), Ẽ(t)

}
(56)

≤ ||(Q̃(t), Ẽ(t))− (γ∗, ξ∗)|| − η.
Or equivalently,

E
{
||(Q(t+ 1), E(t+ 1))− log(V)2 · 1|| | Q̃(t), Ẽ(t)

}
(57)

≤ ||(Q(t), E(t))− log(V)2 · 1|| − η.
Having established (57), one can then apply a similar argument
as in the proof of Theorem 1 in [28] to show that, for
a sufficiently large V satisfying log(V)2 ≥ H , there exist
constants H,K, p = Θ(1), such that in steady state,

Pr
{
|Q̃(c)(t)− log(V)2| > H +Km

}
≤ pe−m. (58)

This implies that the average queue size of Q(c)(t) is
log(V)2+H+O(1) = O(log(V)2). A similar argument shows
that:

Pr
{
|Ẽ(t)− log(V)2| > H +Km

}
≤ pe−m, (59)

which implies that the time average value of E(t) is also
O(log(V)2).

(Part b)) We now consider the utility performance. We prove
our result as follows. First, we prove the overall performance
assuming that there is no energy outage and ignoring the effect
of the modification steps. Then, we come back to refine the
result by taking into consideration the energy outage event
using (39).

We first consider the case when there is no energy outage.
In this case, all actions chosen by IOSA will be executed
and the corresponding computation will be fulfilled and the
corresponding packets will be sent. To analyze this, we add
to both sides of (16) the following term (recall that θ = 0 in
IOSA):

ϕT (t) (60)

, E
{ t+T−1∑

τ=t

∑
c

γ̃c1w(mt)[µ
(c)(τ)−R(c)(τ)] | Z(t)

}
+E
{ t+T−1∑

τ=t

ξ̃
[
1w(mt)[b(τ) + P (τ)]− e(τ)

]
| Z(t)

}
.

We get:

∆T,V (t) + ϕT (t) ≤ TB (61)

+

t+T−1∑
τ=t

E
{

(E(t) + ξ̃)e(τ) | Z(t)
}

−
t+T−1∑
τ=t

E
{∑

c

[
V U (c)(1w(mt)R

(c)(τ))

−[Q(c)(t) + γ̃c]1w(mt)R
(c)(τ)

]
| Z(t)

}
−
t+T−1∑
τ=t

E
{∑

c

1w(mt)µ
(c)(τ)[Q(c)(t) + γ̃c]

+(E(t) + ξ̃)1w(mt)P (τ) | Z(t)
}

+

t+T−1∑
τ=t

E
{[
V D(τ)− 1w(mt)(E(t) + ξ̃)b(τ)

]
| Z(t)

}
.

Plugging in the optimal randomized policy in Π in Theorem
3, we have:

∆T,V (t) + ϕT (t) ≤ TB − V Tφ∗. (62)

Carrying out a telescoping sum over t = mT , m =
0, 1, ...,M − 1, we have:

E
{
L(MT)− L(0)

}
−
MT−1∑
τ=0

E
{
V f(τ)

}
+

M−1∑
m=0

ϕT (mT)

≤ BMT − VMTφ∗.

Rearranging the terms, dividing both sides by MTV , and
taking a lim sup as M →∞, we have:

lim sup
M→∞

1

MT

MT−1∑
τ=0

E
{
f(τ)

}
(63)

≥ φ∗ − B

V
− 1

MTV

M−1∑
m=0

ϕT (mT).

It remains to show that the last term 1
MTV

∑M−1
m=0 ϕT (mT) =

O(1/V). Since both γ̃c and ξ̃ are Θ(V), it suffices to show
that under IOSA, both the data queues and the energy queue
are rarely empty, based on which we can conclude that the
difference between the average output and input rates are very
small. Hence, from the definition of ϕT (t), one can see that
the time average value of ϕT (t) is small.

To prove this, note that (58) implies that when V is large
enough such that log(V)2 −H −K log(V) ≥ µmax, for any
commodity c, we have in steady state that:

Pr
{
Q(c)(t) < log(V)2 −H −K log(V)

}
≤ pe− log(V)

=
p

V
.

Since at every time slot, the queue can serve at most µmax

packets, we conclude that:

lim
T→∞

1

T

T−1∑
τ=0

E
{

1w(mt)[µ
(c)(τ)−R(c)(τ)]

}
≤ µmaxp

V
. (64)

A similar argument shows that when log(V)2 − H −
K log(V) ≥ 0, we have:

lim
T→∞

1

T

T−1∑
τ=0

E
{

1w(mt)[b(τ) + P (τ)]− e(τ)]
}

(65)

≤ (dmax + Pmax)p

V
.

Using (64) and (65) in (63), we conclude that:

lim sup
M→∞

1

MT

MT−1∑
τ=0

E
{
f(τ)

}
≥ φ∗ −O(

1

V
).

This proves the utility performance, assuming no energy
outage events. In Part c) below, we will show that the average
rate of outage events is O(1/V). Hence, the utility loss is
O(|βC|+αdmax

V). This completes the proof of Part b).
(Part c)) We now look at the packet dropping part. It can

be seen from the IOSA algorithm that packets are dropped
only when there is not enough energy in the energy queue.
However, when V is large enough to satisfy log(V)2 −H −
K[1

2K log(V)2] ≥ dmax +Pmax, we have in steady state that,
the energy outage probability is bounded by:

Pr
{
E(t) < log(V)2 −H −K[

1

2K
log(V)2]

}
≤ p

V
log(V)

2K

.

Since in every time slot, there can be at most µmax packets
dropped from the queue. We conclude that the average packet
dropping rate is O(1/V

log(V)
2K). Similarly, disutility due to en-

ergy outage occurs with probability of no more than p

V
log(V)

2K

,

which results in an average disutility of O(αdmaxp

V
log(V)

2K

).

REFERENCES

[1] S. Perez. The number of mobile devices will exceed worlds population
by 2012 (and other shocking figures). TechCrunch Article, available
at http://techcrunch.com/2012/02/14/the-number-of-mobile-devices-will-
exceed-worlds-population-by-2012-other-shocking-figures, February 14,
2012.

[2] D. Etherington. Android phones and tablets ranked by battery life:
Longest lasting smartphones arent top-tier devices. TechCrunch Article,
available at http://techcrunch.com/2012/12/18/android-phones-and-
tablets-ranked-by-battery-life-longest-lasting-smartphones-arent-top-
tier-devices, December 18, 2012.

[3] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang, and
G. Zussman. Challenge: Ultra-low-power energy-harvesting active
networked tags (EnHANTs). Proceedings of ACM MobiCom, Sept.
2009.

[4] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan,
and J. H. Lang. Vibration-to-eletric energy conversion. IEEE Trans. on
VLSI, Vol. 9, No.1, Feb. 2001.

[5] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. B. Srivastava.
Design considerations for solar energy harvesting wireless embedded
systems. Proceedings of IEEE IPSN, April 2005.

[6] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta. Optimal energy
management policies for energy harvesting sensor nodes. IEEE Trans.
on Wireless Communication, Vol.9, Issue 4., April 2010.

[7] R. Srivastava and C. E. Koksal. Basic tradeoffs for energy management
in rechargeable sensor networks. ArXiv Techreport arXiv: 1009.0569v1,
Sept. 2010.

[8] M. Gatzianas, L. Georgiadis, and L. Tassiulas. Control of wireless
networks with rechargeable batteries. IEEE Trans. on Wireless Com-
munications, Vol. 9, No. 2, Feb. 2010.

[9] L. Lin, N. B. Shroff, and R. Srikant. Asymptotically optimal power-
aware routing for multihop wireless networks with renewable energy
sources. Proceedings of INFOCOM, 2005.

[10] L. Huang and M. J. Neely. Utility optimal scheduling in energy
harvesting networks. Proceedings of ACM MobiHoc, May 2011.

[11] C. Tapparello, O. Simeone, and M. Rossi. Dynamic compression-
transmission for energy-harvesting multihop networks with correlated
sources. IEEE/ACM Trans. on Networking, Vol. 22, No. 6, Dec 2014.

[12] V. Joseph, V. Sharma, and U. Mukherji. Optimal sleep-wake policies for
an energy harvesting sensor node. Proceedings of IEEE International
Conference on Communications, June 2009.

[13] N. Michelusi, K. Stamatiou, and M. Zorzi. Transmission policies for
energy harvesting sensors with time-correlated energy supply. IEEE
Transactions on Communications, Vol. 61, No. 7, 2013.

[14] K. J. Prabuchandran, S. K. Meena, and S. Bhatnagar. Q-learning based
energy management policies for a single sensor node with finite buffer.
IEEE Wireless Comm. Letters, February 2013.

[15] C. Hsu, C. Liu, and H. Wang. A reinforcement learning-based tod
provisioning dynamic power management for sustainable operation of
energy harvesting wireless sensor node. IEEE Trans. on Emerging Topics
in Computing, April 2014.

[16] S. Fahmy Y. Wu and N. B. Shroff. Optimal sleep/wake scheduling
for time-synchronized sensor networks with qos guarantees. IEEE/ACM
Trans. on Networking, vol. 17, Issue 5, pp. 1508-1521., October 2009.

[17] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource Allocation and
Cross-Layer Control in Wireless Networks. Foundations and Trends in
Networking Vol. 1, no. 1, pp. 1-144, 2006.

[18] L. Huang and M. J. Neely. Utility optimal scheduling in processing
networks. Proceedings of IFIP Performance, 2011.

[19] M. J. Neely and L. Huang. Dynamic product assembly and inventory
control for maximum profit. Proceedings of IEEE Conference on
Decision and Control, Dec. 2010.

[20] C. M. Vigorito, D. Ganesan, and A.G. Barto. Adaptive duty cycling for
energy harvesting systems. Proceedings of ACM ISLPED, 2006.

[21] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power management
in energy harvesting sensor networks. ACM Trans. on Embedded
Computing Systems, Vol.6, Issue 4, Sept. 2007.

[22] A. Carroll and G. Heiser. An analysis of power consumption in a
smartphone. Proceedings of the USENIX conference, 2010.

[23] N. Li, L. Chen, and S. H. Low. Optimal demand response based on
utility maximization in power networks. IEEE Power and Energy Society
General Meeting, 2011.

[24] G. Girish, D. Riess, and M. Ann Piette. Analysis of open automated
demand response deployments in california and guidelines to transition
to industry standards. LAWRENCE BERKELEY NATIONAL LABORA-
TORY Reports LBNL-6560E, Jan 2014.

[25] L. Huang, J. Walrand, and K. Ramchandran. Optimal demand response
with energy storage management. Proceedings of IEEE SmartGrid-
Comm, November 2012.

[26] M. J. Neely. Energy optimal control for time-varying wireless networks.
IEEE Transactions on Information Theory 52(7): 2915-2934, July 2006.

[27] L. Huang and M. J. Neely. Max-weight achieves the ex-
act [O(1/V), O(V)] utility-delay tradeoff under Markov dynamics.
arXiv:1008.0200v1, 2010.

[28] L. Huang and M. J. Neely. Delay reduction via Lagrange multipliers
in stochastic network optimization. IEEE Trans. on Automatic Control,
56(4):842–857, April 2011.

[29] F. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, vol. 8, pp. 33-37, 1997.

