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Multipartite quantum states may exhibit different types of quantum entanglement in that they cannot be
converted into each other by local quantum operations only, and fully understanding mathematical structures
of different types of multipartite entanglement is a very challenging task. In this paper, from the viewpoint
of Hardy’s nonlocality, we compare W and GHZ (Greenberger-Horne-Zeilinger) states and show a couple of
crucial different behaviors between them. Particularly, by developing a geometric model for Hardy’s nonlocality
problem of W states, we derive an upper bound for its maximal violation probability, which turns out to be
strictly smaller than the corresponding probability of GHZ states. This gives us a new comparison between these
two quantum states, and the result is also consistent with our intuition that GHZ states are more entangled.
Furthermore, we generalize our approach to obtain an asymptotic characterization for general N-qubit W states,
revealing that when N goes up, the speed that the maximum violation probabilities decay is exponentially slower
than that of general N-qubit GHZ states. We provide some numerical simulations to verify our theoretical results.
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I. INTRODUCTION

Entanglement plays a central role in quantum information
processing tasks, and it is often entanglement that makes
quantum schemes enjoy remarkable advantage over their clas-
sical counterparts. Therefore, studying and characterizing the
properties of quantum entanglement is naturally an impor-
tant and fundamental problem. At present, the structure of
quantum entanglement for bipartite quantum states has been
relatively clear, especially the case of pure states. However,
the situation of multipartite entanglement is much more com-
plicated, and it is still far from being understood very well.
Nevertheless, a remarkable fact on multipartite entanglement
has been well known: that is, multipartite quantum states
can be entangled in different ways, in that different kinds of
multipartite entanglement cannot be converted into each other
by local operations only [1]. A most famous example that
demonstrates this fact is Greenberger-Horne-Zeilinger (GHZ)
and W states, as they are two different forms of entanglement
in three-qubit quantum states [1].

Different entanglement forms exhibit different properties.
In the example of GHZ and W states, it has been well known
that the GHZ state is more entangled, but the W state is more
robust against qubit loss. For the general case of multipartite
entanglement, however, very little like this is known. In order
to gain a deep understanding of this problem, characterizing
different entanglement forms from more viewpoints is highly
demanded.

One attempt of this kind is comparing the underlying quan-
tum nonlocality produced by different forms of multipartite
entanglement, which is usually indicated by the fact that in-
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volved quantum states violate certain Bell inequalities, which
is called Bell nonlocality. Particularly, since Bell nonlocality
is revealed by outcome statistics of quantum measurements,
this approach allows us to observe the differences between
multipartite entangled quantum states directly in quantum
laboratories [2]. What is more, the task can be fulfilled in
a device-independent manner, making it possible to compare
different kinds of multipartite entanglement reliably by using
unreliable quantum devices, as one does not have to care about
the internal workings of involved quantum devices. In fact,
this approach has been studied extensively for years, and a lot
of interesting results that certify the existence of multipartite
entanglement have been reported [2–6]. As an example, it
has been shown that Bell inequalities exist such that they
can be violated by W states but not by GHZ states, and vice
versa [2]. Furthermore, Bell nonlocality has even been utilized
to quantify quantum entanglement in a device-independent
manner, though for now most results are focusing on bipartite
cases [7–10].

Therefore, it can be said that quantum nonlocality gives us
a powerful tool to study quantum entanglement. Interestingly,
apart from Bell inequalities, there exist other ways to exhibit
nonlocality without resorting to inequalities [11–14], and
Hardy’s paradox is a famous framework of this kind [14]. For
convenience, in later discussions we use Hardy’s nonlocality
to address the nonlocal property revealed by Hardy’s paradox.

The original Hardy’s nonlocality problem was a proof of
entanglement for almost all two qubit states [14], and later was
generalized to scenarios of multiple qubits, multiple settings,
and qudit states [15–20]. Furthermore, a lot of experiments
have been performed to confirm the paradox [21–23]. In this
paper, our comparisons will be based on Hardy’s nonlocality
problem for multiqubit states proposed in [16], which can
be formulated as below. Consider an N-qubit quantum state
|ψ〉 and two sets of observables Ui and Di (i ∈ [N], where
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[N] ≡ {1, 2, . . . , N}), where the subscript i represents that the
observable measures the ith qubit alone. The observables are
set up so that

P(D1U2 · · ·UN |++ · · · +) = 0,

P(U1D2 · · ·UN |++ · · · +) = 0,

...

P(U1U2 · · · DN |++ · · · +) = 0,

P(D1D2 · · · DN |−− · · · −) = 0,

P(U1U2 · · ·UN |++ · · · +) > 0,

where P(A1A2 · · · AN |+ + +) denotes the joint probability
when one measures the ith qubit with the measurement setting
Ai and gets the outcome +, and the other expressions are
similar. And for convenience, we call the first N + 1 relations
equation constraints.

It turns out that quantum entanglement is necessary to
manifest Hardy’s nonlocality, i.e., satisfy all the constraints
above [14,16]. Indeed, in any classical scenario where each
local measurement is independent of the others, the last
inequality gives P(Ui|+) > 0 for all i ∈ [N], implying that
P(Di|+) = 0 for all i ∈ [N], which is a contradiction to
P(D1D2 · · · DN |−− · · · −) = 0. Therefore, if a classical sys-
tem satisfies the first N + 1 constraints, we must have that
P(U1U2 · · ·UN |++ · · · +) = 0, and the violation to this rela-
tion means that the system must be quantum. For convenience,
when the first N + 1 constraints are satisfied, we call the max-
imal value of P(U1U2 · · ·UN |++ · · · +) the maximal violation
probability.

Since Hardy’s nonlocality reveals quantumness of entan-
gled quantum states, a nature question is, can we utilize it to
look into the essential properties of multipartite entanglement,
like describing the differences between multipartite entangle-
ment forms? In fact, to our knowledge Hardy’s nonlocality has
not been utilized to compare different entanglement structures
of multipartite quantum states. In this paper, we show that
this is indeed possible. Particularly, complementing a previous
work that investigated Hardy’s nonlocality for multipartite
GHZ states [16], we analyze Hardy’s nonlocality for multipar-
tite W states, which exhibits some crucial differences between
them, confirming the above possibility.

To achieve this, by developing a new geometric model for
W states in Hardy’s nonlocality problem, we derive an upper
bound of the maximal violation probability for the perfect
three-qubit W state, which is 1/9 and strictly smaller than
the corresponding probability of the perfect three-qubit GHZ
state, 0.125. Note that this comparison is consistent with our
intuition that the GHZ state is more entangled, though we
have known that entanglement and nonlocality are two differ-
ent computational resources. Furthermore, we also obtain an
asymptotic lower bound of maximum violation probabilities
for multipartite W states as well, which is roughly �(1/N ).
And this means that when N goes up, the speed that maxi-
mum violation probabilities for multipartite W states decay is
exponentially slower than that of multipartite GHZ states. We
also provide some numerical simulation results to verify our
theoretical results. Therefore, our results indicate a couple of

crucial different behaviors of W states and GHZ states from
the viewpoint of Hardy’s nonlocality.

As stressed above, characterizing the structures of multi-
partite quantum entanglement is a fundamental problem in
quantum information. Our main results imply that Hardy’s
nonlocality provides us an additional viewpoint from which to
look into this problem. Since Hardy’s nonlocality is described
by quantum measurement outcome statistics only, this new
approach is also of a device-independent nature, thus bringing
us the convenience of reliable physical implementations by
unreliable quantum devices.

II. GEOMETRIC MODEL FOR GENERALIZED
THREE-QUBIT W STATES

In this section, we first consider the generalized W state,
which can be expressed as

|ψ〉 = a1 |100〉 + a2 |010〉 + a3 |001〉 , (1)

where ai �= 0 and
∑

i |ai|2 = 1. By applying local phases on
the basis state |1〉 of each qubit, we may assume without loss
of generality that ai > 0.

Note that the constraints and the objective in Hardy’s
nonlocality problem are given by relations on joint probability
distributions of measurement outcomes of observables. We
now develop a geometric model to represent local observables
for generalized W states, which allows us to formulate these
joint probability distributions in the language of vectors. Later
we will see that the geometric model can be generalized to
N-qubit generalized W states.

Given an observable A, let λ be one of its eigenvalues with
one-dimensional eigenspace; its corresponding eigenstate can
be written as

|φ〉 = cos ϕ |0〉 + eiθ sin ϕ |1〉 , (2)

where ϕ ∈ [0, π/2] and θ ∈ [0, 2π ).
To build our geometric model, when ϕ �= π/2 we make the

following definition.
Definition 1. The representation vector of the

observable/eigenvalue pair (A, λ) is defined as

v(A, λ) ≡ (tan ϕ cos θ, tan ϕ sin θ )T ∈ R2, (3)

and, for convenience, when ϕ �= π/2 we say v(A, λ) is well
defined.

Recall that Hardy’s nonlocality problem is a maximization
problem among local observables Ui and Di with eigenvalues
±1, where the subscript i ∈ [3] indicates the observable mea-
suring the ith qubit:

maximize P(U1U2U3|+ + +), (4)

subject to P(D1U2U3|+ + +) = 0, (5)

P(U1D2U3|+ + +) = 0, (6)

P(U1U2D3|+ + +) = 0, (7)

P(D1D2D3|− − −) = 0. (8)

By our geometric model, the above conditions can be
restated, as shown in the following proposition.

Proposition 2. Let A1, A2, A3 be observables with all their
eigenspaces being one-dimensional. Let λ1, λ2, λ3 be eigen-
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values corresponding to A1, A2, A3, respectively. Suppose
v(Ai, λi ) is well defined for i ∈ [3]. Let ti = ai · v(Ai, λi ).
Then

P(A1A2A3|λ1λ2λ3)

= ‖t1 + t2 + t3‖2(
1 + 1

a2
1
‖t1‖2

)(
1 + 1

a2
2
‖t2‖2

)(
1 + 1

a2
3
‖t3‖2

) . (9)

Proof. Suppose the eigenstate for (Ai, λi ) pair is

|φi〉 = cos ϕi |0〉 + eiθi sin ϕi |1〉 ,

where ϕi ∈ [0, π/2) and θi ∈ [0, 2π ).
By the postulate of quantum measurement, we have that

P(A1A2A3|λ1λ2λ3)

= 〈ψ | (|φ1〉 〈φ1| ⊗ |φ2〉 〈φ2| ⊗ |φ3〉 〈φ3|) |ψ〉 = aT Qa,

where Q is a positive semidefinite matrix defined as

Q =
⎛
⎝ 1 cos(θ1 − θ2) cos(θ1 − θ3)

cos(θ1 − θ2) 1 cos(θ2 − θ3)
cos(θ1 − θ3) cos(θ2 − θ3) 1

⎞
⎠, (10)

and a is a vector defined as

a =
⎛
⎝a1 sin ϕ1 cos ϕ2 cos ϕ3

a2 cos ϕ1 sin ϕ2 cos ϕ3

a3 cos ϕ1 cos ϕ2 sin ϕ3

⎞
⎠. (11)

The matrix Q admits a factorization Q = BT B, where

B =
(

cos θ1 cos θ2 cos θ3

sin θ1 sin θ2 sin θ3

)
.

Therefore, the factorization gives

P(A1A2A3|λ1λ2λ3) = ‖Ba‖2. (12)

Extracting the factor
∏

i cos2 ϕi from the outcome proba-
bility, we have that

P(A1A2A3|λ1λ2λ3) =
(∏

i

cos2 ϕi

)∥∥∥∥∥∥B

⎛
⎝a1 tan ϕ1

a2 tan ϕ2

a3 tan ϕ3

⎞
⎠

∥∥∥∥∥∥
2

.

According to the definition of v(Ai, λi ), it holds that

P(A1A2A3|λ1λ2λ3) =
(∏

i

cos2 ϕi

)
‖t1 + t2 + t3‖2.

In the meanwhile, the cosine factors can be rewritten as

cos2 ϕi = 1

1 + tan2 ϕi
= 1

1 + 1
a2

i
‖ti‖2

,

which means that

P(A1A2A3|λ1λ2λ3)

= ‖t1 + t2 + t3‖2(
1 + 1

a2
1
‖t1‖2

)(
1 + 1

a2
2
‖t2‖2

)(
1 + 1

a2
3
‖t3‖2

) .

This concludes the proof. �
We immediately have the following corollary:
Corollary 3. Let A1, A2, A3 be observables with all their

eigenspaces being one-dimensional, and let λ1, λ2, λ3 be
eigenvalues corresponding to A1, A2, A3, respectively. Sup-
pose v(Ai, λi ) is well defined for i ∈ [3]. Let ti = ai · v(Ai, λi ).
Then

P(A1A2A3|λ1λ2λ3) = 0

if and only if

t1 + t2 + t3 = 0. (13)

In order to formulate all constraints in Hardy’s nonlocality
problem, we make the following further definitions.

Definition 4. For i ∈ [3], if v(Ui,+1), v(Di,+1), and
v(Di,−1) are well defined, let

ui = aiv(Ui,+1), (14)

vi = aiv(Di,+1), (15)

wi = aiv(Di,−1). (16)

With the new notations, we now translate the constraints
in Hardy’s nonlocality problem in the language of vectors
defined above. First, by Corollary 3, we have

vi = −
∑
j �=i

u j (17)

for i ∈ [3], and ∑
j

w j = 0. (18)

Second, by Definition 1, we have vi = − a2
i wi

‖wi‖2 . Indeed,
suppose the eigenstate for (Di,+1) is

|φ+〉 = cos αi |0〉 + eiβi sin αi |1〉 .

Then the eigenstate for (Di,−1) is

|φ−〉 = sin αi |0〉 − eiβi cos αi |1〉 .

Now, by Definition 1, we have that

vi = ai(tan αi cos βi, tan αi sin βi )
T ,

wi = − ai(cot αi cos βi, cot αi sin βi )
T ,

hence vi = − a2
i wi

‖wi‖2 .
With the above observations, when all representation vec-

tors are well defined, the probability maximization problem
can be rewritten as

maximize P(U1U2U3|+ + +)

= ‖u1 + u2 + u3‖2(
1 + 1

a2
1
‖u1‖2

)(
1 + 1

a2
2
‖u2‖2

)(
1 + 1

a2
3
‖u3‖2

)
052118-3



LIJINZHI LIN AND ZHAOHUI WEI PHYSICAL REVIEW A 101, 052118 (2020)

= ‖v1 + v2 + v3‖2/4(
1 + 1

4a2
1
‖v2 + v3 − v1‖2

)(
1 + 1

4a2
2
‖v3 + v1 − v2‖2

)(
1 + 1

4a2
3
‖v1 + v2 − v3‖2

) ,

subject to w1 + w2 + w3 = 0,

where wi(i ∈ [3]) are the variables and

vi = − a2
i wi

‖wi‖2
.

III. BOUNDING THE VIOLATION PROBABILITY
FOR THE W STATE

Based on the geometric model introduced above, we now
prove our first main result, which shows that for the perfect W
state the maximal violation probability in Hardy’s nonlocality
problem is upper bound for 1/9. Since the geometric model

supposes all representation vectors are well defined, we first
consider this case, then we show that the conclusion can be
generalized to arbitrary case.

Lemma 5. Let Ui and Di be observables in Hardy’s nonlo-
cality problem for the W state |ψ〉 = 1/

√
3(|001〉 + |010〉 +

|100〉). If v(Ui,+1), v(Di,+1), and v(Di,−1) are well de-
fined for i ∈ [3], then all equation constraints being satisfied
implies that

P(U1U2U3|+ + +) � 1/9.

Proof. We have known that the target probability can be
expressed as

P(U1U2U3|+ + +) =
1
4‖v1 + v2 + v3‖2(

1 + 3
4‖ − v1 + v2 + v3‖2

)(
1 + 3

4‖v1 − v2 + v3‖2
)(

1 + 3
4‖v1 + v2 − v3‖2

) .

Expanding the denominator gives

P(U1U2U3| + ++) �
1
4‖v1 + v2 + v3‖2

1 + 3
4 (‖ − v1 + v2 + v3‖2 + ‖v1 − v2 + v3‖2 + ‖v1 + v2 − v3‖2)

=
1
4‖v1 + v2 + v3‖2

1 + 9
4‖v1 + v2 + v3‖2 − 6(v1 · v2 + v2 · v3 + v3 · v1)

,

where v1 · v2 is the inner product of v1 and v2.
Since isometries preserve inner products, we may assume that

w1 = − (M, 0)T ,

w2 = − (x, y)T ,

w3 = − (−x − M,−y)T

without loss of generality, where we have utilized the relation w1 + w2 + w3 = 0.
By the assumption that all v(Di,+1) and v(Di,−1) are well defined, we have w1,w2,w3 �= 0; that is, M �= 0, x2 + y2 �= 0

and (x + M )2 + y2 �= 0.
By relation vi = −wi/(3‖wi‖2), we have

v1 = (1/M, 0)T /3,

v2 =
(

x

x2 + y2
,

y

x2 + y2

)T /
3,

v3 =
( −x − M

(x + M )2 + y2
,

−y

(x + M )2 + y2

)T /
3.

Then

v1 · v2 + v2 · v3 + v3 · v1 =
x
M [(x + M )2 + y2] − x(x + M ) − y2 − x+M

M (x2 + y2)

9(x2 + y2)[(x + M )2 + y2]

= −2y2

9(x2 + y2)[(x + M )2 + y2)]
� 0.

Therefore,

P(U1U2U3|+ + +) �
1
4‖v1 + v2 + v3‖2

1 + 9
4‖v1 + v2 + v3‖2

� 1/9.
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�
We now show that the assumption in Lemma 5, that all

representation vectors involved in the Hardy’s nonlocality
problem are well defined, can be removed, which means that
in this case the upper bound in Lemma 5 is still correct.

For this, we first suppose two of v(Ui,+1) are not well
defined; then it can be seen that the vector a in Eq. (11)
for P(U1U2U3|+ + +) is zero, thus Eq. (12) indicates that
P(U1U2U3|+ + +) = 0, and it does not hurt the upper bound.
Second, a similar argument shows that if one of v(Ai|λi ) is not
well defined, then P(A1A2A3|λ1λ2λ3) = 0 implies that there
must be another i′ �= i such that v(Ai′ |λi′ ) is not well defined
either.

Then combining the above two observations, we can rule
out the possibility that only one of v(Ui,+1), say v(U1,+1),
is not well defined. If this is the case, then Eqs. (6) and (7)
mean that v(D2,+1) and v(D3,+1) are not well defined, i.e.,
v(D2,−1) = 0 and v(D3,−1) = 0. By applying Corollary 3
on P(D1D2D3|− − −) = 0, we have that v(D1,−1) = 0, and
this indicates that v(D1,+1) is not well defined either. How-
ever, we know that P(D1U2U3|+ + +) = 0, and this requires
that at least one of v(U2,+1) and v(U3,+1) is not well
defined, which is a contradiction. In summary, if any vector
in v(Ui,+1), v(Di,+1), and v(Di,−1) is not well defined,
satisfying all equation constraints means that P(U1U2U3| +
++) = 0. Therefore, we have the following theorem.

Theorem 6. Let Ui and Di be observables in Hardy’s
nonlocality problem for the W state |ψ〉 = 1/

√
3(|001〉 +

|010〉 + |100〉). Then all equation constraints being satisfied
implies that

P(U1U2U3|+ + +) � 1/9.

Theorem 6 essentially states that the violation probability
of the perfect three-qubit W state is upper bounded by 1/9.
For comparison, it has been shown that obtaining a violation
probability of 0.125 is possible from the perfect three-qubit
GHZ state [16].

IV. GENERALIZATION TO N QUBIT W STATES

In this section, our first task is to show that the geometric
model introduced above can be generalized to N-qubit W
states with N > 3.

The N-qubit generalized W state is defined as

|ψ〉 = a1 |10 · · · 0〉 + a2 |01 · · · 0〉 + · · · + aN |00 · · · 1〉 ,

where ai > 0 for all i ∈ [N] and
∑

i a2
i = 1. When ai = 1/

√
N

for all i ∈ [N], we call it the N-qubit perfect W state, denoted
by |WN 〉. For convenience, we denote the N-qubit perfect GHZ
state as

|GHZN 〉 = 1√
2

(|00 · · · 0〉 + |11 · · · 1〉). (19)

Following Definition 1, the joint measurement outcome
probability formula is readily generalized as Proposition 7.

Proposition 7. Let Ai(i ∈ [N]) be observables with all their
eigenspaces being one-dimensional. Let λi be an eigenvalue
corresponding to Ai. Suppose v(Ai, λi ) is well defined for i ∈

[N]. Let vi = ai · v(Ai, λi ). Then

P(A1 · · · AN |λ1 · · · λN ) =

∥∥∥∑N
i=1 vi

∥∥∥2

∏N
i=1

(
1 + 1

a2
i
‖vi‖2

) .

Corollary 8. Let Ai(i ∈ [N]) be observables with all their
eigenspaces being one-dimensional. Let λi be an eigenvalue
corresponding to Ai. Suppose v(Ai, λi ) is well defined for i ∈
[N]. Let vi = ai · v(Ai, λi ). Then

P(A1 · · · AN |λ1 · · · λN ) = 0

if and only if

N∑
i=1

vi = 0.

The N-qubit Hardy’s nonlocality can be restated as the
following maximization problem among the observables Ui

and Di:

maximize P(U1U2 · · ·UN |++ · · · +),

subject to P(D1U2 · · ·UN |++ · · · +) = 0,

P(U1D2 · · ·UN |++ · · · +) = 0,

...

P(U1U2 · · · DN |++ · · · +) = 0,

P(D1D2 · · · DN |−− · · · −) = 0.

Definition 9. For i ∈ [N], if v(Ui,+1), v(Di,+1), and
v(Di,−1) are well defined, let

ui = aiv(Ui,+1),

vi = aiv(Di,+1),

wi = aiv(Di,−1).

Additionally, let u = ∑
i∈[N] ui, v = ∑

i∈[N] vi, and w =∑
i∈[N] wi.
By the constraints in Hardy’s nonlocality, we have the

following relations:

∀i ∈ [N], vi = −a2
i wi/‖wi‖2,

∀i ∈ [N], vi = −(u − ui ),

∀i ∈ [N], ui = vi + u,

u = − v

N − 1
.

Under the relations above, the probability maximization
problem becomes:

maximize P(U1U2 · · ·UN |++ · · · +)

= ‖u‖2∏N
i=1

(
1 + 1

a2
i
‖ui‖2

)
= ‖v‖2/(N − 1)2∏N

i=1

(
1 + ‖v − (N−1)vi‖2/

((
(N−1)2a2

i

)))
subject to w = 0,
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where wi(i ∈ [N]) are the variables and

vi = − a2
i wi

‖wi‖2
.

We now turn to the second task of this section. Differently
from the three-qubit case, we consider lower bounding the
maximum violation probability of the Hardy nonlocality prob-
lem when N is large. The following theorem gives such an
asymptotic lower bound. Since we are focusing on a lower
bound, we can suppose that all the involved representation
vectors are well defined.

Theorem 10. Let P(N ) denote the maximum violation
probability in Hardy’s nonlocality problem for the perfect
N-qubit W states. Then P(N ) = �(N−1).

Proof. For simplicity, we represent the vectors ui, vi,wi

with one real number each, in the sense that their second
component is equal to zero.

Let wi = 1/(N − 1) for i ∈ [N − 1] and wN = −1. Then,
∀i ∈ [N − 1],

vi = −N − 1

N
, vN = 1

N
,

u = N − 2

N − 1
, ui = − 1

N (N − 1)
,

uN = N2 − N − 1

N (N − 1)
.

Now let N tend to +∞. By Proposition 7, the violation
probability under this settings is

‖u‖2∏N
i=1

(
1 + 1

a2
i
‖ui‖2

) ≈ 1(
1 + 1

N (N−1)2

)N−1(
1 + (N2−N−1)2

N (N−1)2

)
≈ 1/N(

1 + 1
N (N−1)2

)N−1

≈ 1/N.

Therefore, we have P(N ) = �(N−1). �
As a comparison, it has been known that the maximum

violation probabilities for the N-qubit perfect GHZ states
diminish exponentially with N [16], thus we witness another
sharp difference between asymptotic behaviors of |WN 〉 and
|GHZN 〉 when N tends to infinity. Therefore, on one hand
|GHZN 〉 enjoys stronger nonlocality than |WN 〉 if N = 3, but
on the other hand when N becomes larger the speed at which
Hardy’s nonlocality of |WN 〉 decays is much slower.

V. NUMERICAL SIMULATION RESULTS

We made the following numerical simulations to verify our
theoretical results, where very good consistency can be seen.
In the meantime, phenomena that deserve further study can
also be observed. Our numerical results are obtained via the
optimization package SCIPY.

A. The three-qubit perfect W state

We first consider the case of the three-qubit perfect W state.
In order to parametrize the involved measurements, let

v(Ui,+1) ≡ (tan ϕ1,i cos θ1,i, tan ϕ1,i sin θ1,i )
T ∈ R2 (20)

and

v(Di,+1) ≡ (tan ϕ2,i cos θ2,i, tan ϕ2,i sin θ2,i )
T ∈ R2. (21)

For this, we consider the following construction, which is
guided by the geometric model:

tan ϕ11 = M/4, tan ϕ12 = 5M/4, tan ϕ13 = M/4, (22)

θ11 = 0, θ12 = π, θ13 = 0, (23)

tan ϕ21 = M, tan ϕ22 = M/2, tan ϕ23 = M, (24)

θ21 = 0, θ22 = π, θ23 = 0, (25)

where M > 0 is a parameter. In this setting, our numerical
simulations show that when M is picked to maximize the vio-
lation probability, the outcome probability is about 0.071 868,
which is indeed below the theoretical upper bound 1/9 that
our theoretical result proves, and the maximum violation
probability 0.125 that the perfect three-qubit GHZ state can
achieve [16].

B. The three-qubit generalized W state

We now turn to generalized three-qubit W states, defined as
|ψ〉 = a1 |100〉 + a2 |010〉 + a3 |001〉. Our numerical simula-
tions show that, when a1 = 0.448 473, a2 = 0.632 011, and
a3 = 0.632 008, the configuration

tan ϕ11 = 1.320 219, tan ϕ12 = 0.147 611,

tan ϕ13 = 0.147 611,

θ11 = π, θ12 = 0, θ13 = 0,

tan ϕ21 = 0.295 222, tan ϕ22 = 1.172 608,

tan ϕ23 = 1.172 607,

θ21 = π, θ22 = 0, θ23 = 0,

achieves violation probability of 0.097 738 1, which is higher
than that of the perfect three-qubit W state. Notice that both
resulting sequences (ϕ1,i ) and (ai ) exhibit SN−1 = S2 sym-
metry, which matches the W state when the amplitudes are
ignored. Therefore, we conjecture that the maximum violation
probability can be achieved when a1 = a2 = · · · = aN−1 and
ϕ1,i = ϕ2,i = · · · = ϕN−1,i. If the conjecture is proved, then
the maximization problem would be simplified in the sense
that at most two real parameters would be free regardless of N .

Figure 1 is a color plot of the violation probability max-
imized using the optimization package for different ampli-
tudes. The horizontal and vertical axes represents α and β

from 0 to π/2, respectively, which are used in the definitions

052118-6



TESTING MULTIPARTITE ENTANGLEMENT WITH … PHYSICAL REVIEW A 101, 052118 (2020)

FIG. 1. The color plot of the maximum violation probability
for different amplitude settings (a1, a2, a3). The amplitudes are
parametrized using spherical coordinates, with angles α and β

ranging from 0 to π/2. The angle α increases from left to right
(horizontally), while β increases from top to bottom (vertically).

of amplitudes as

a1 = cos β cos α, a2 = cos β sin α, a3 = sin β.

It is interesting to see that the area with larger violation
probability forms three yellow bands.

C. The N-qubit perfect W state

For the N-qubit perfect W state, our numerical experiment
gives the maximum violation probabilities P(N ) shown in
Fig. 2. It is evident from the figure that P(N ) is unimodal
in the range 3 � N � 10 and is maximized at N = 5. For
now no theoretical analysis can explain this fact, and this is
an intriguing phenomenon worth further study. Additionally,
it can be observed that the maximum violation probabilities
assumed by the perfect N-qubit GHZ states are all below P(N )
except when N = 3.

VI. CONCLUSION

In this paper, we have analyzed Hardy’s nonlocality for
W states. For this purpose, we develop a geometric model
for general W states, and this model allows us to describe

FIG. 2. The maximal violation probabilities of N-qubit perfect
W states and GHZ states.

the constraints in Hardy’s nonlocality problem as relations on
vectors, which in turn makes it convenient to characterize the
target violation probability.

Concretely, for the perfect three-qubit W state, we have
shown that its violation probability is upper-bounded by 1/9.

As a comparison, the perfect three-qubit GHZ state has
maximum violation probability 0.125, and the stronger cor-
relation provided by the GHZ state is also consistent with our
intuition that it is more entangled than the W state, though
we know that entanglement and nonlocality are two different
computational resources.

For the perfect N-qubit W states where N � 4, we have
shown that their maximum violation probabilities are at least
�(N−1), making another sharp comparison with the perfect
N-qubit GHZ states, since the maximum violation probabili-
ties of the latter decay exponentially when N goes up.

Therefore, it can be seen that Hardy’s nonlocality indeed
provides an additional viewpoint from which to distinguish
the different entanglement structures of GHZ and W states.
We hope this approach can be generalized to more com-
plicated and more general multipartite quantum states, and
eventually give us a new approach to characterize multipartite
entanglement in a device-independent manner.
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