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Experimental measurement-dependent local Bell test with human free will
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A Bell test can rule out local realistic models and has potential applications in communication and information
tasks. For example, a Bell’s inequality violation can certify the presence of intrinsic randomness in measurement
outcomes, which can be used to generate unpredictable random numbers. Nevertheless, a Bell test requires
measurements that are chosen independently of environment in the test, as would be the case if the measurement
setting choices were themselves intrinsically random. Such situation seems to create a “bootstrapping problem”
recently addressed in the BIG Bell Test, a collection of various Bell tests using human choices. Here, we report
in detail our experimental methods and results within the BIG Bell Test, specifically for a special type of Bell
inequality, known as the measurement-dependent local inequality. With this inequality, even a small amount of
measurement independence makes it possible to disprove local realistic models. The experiment utilizes human-
generated random numbers in selecting the measurement settings and is implemented with space-like separation
between two distant measurement sites. The experimental result violates a Bell’s inequality, which cannot be
explained by local hidden variable models with independence parameter (as defined in [G. Piitz et al., Phys. Rev.
Lett. 113, 190402 (2014)]) [ > 0.10 £ 0.05. This result further quantifies the degree to which a local hidden

variable model would need to constrain human choices, if it is to reproduce the experimental results.
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I. INTRODUCTION

Bell tests [1] are designed to rule out local hidden vari-
able models (LHVMs) [2]. By violating Bell’s inequalities
in experiments that faithfully reproduce the assumptions of
Bell’s theorem, we can demonstrate that the underlying phys-
ical process cannot be explained with LHVMs. In quantum
information processing, Bell tests provide device-independent
advantages in a variety of tasks, such as quantum key distri-
bution [3-6], randomness amplification [7—11] and expansion
[12—15], entanglement quantification [16], and dimension wit-
ness [17].

Focusing on the bipartite scenario, a Bell test involves
two space-like separated participants Alice and Bob, who
implement measurements with settings or “inputs” x and y and
generate outputs a and b, respectively. The Bell inequality is
defined by a linear combination of the probability distribution
P(ab|xy) according to

T =" canyPlablxy) < J. (1)

abxy
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Here Jc is the classical upper bound with LHVMs. In quantum
mechanics, a Bell value larger than J- may be achieved. In
such a case, we call it a violation of the Bell inequality.
In device-independent tasks, the quantum advantage can be
certified solely by the Bell value J and the certification can
be independent of the implementation of the devices used for
state preparation and measurement. For instance, when the
Bell inequality is violated, the output cannot be completely
predicted, hence the entropy of the output is positive [18].
Complete random bits can be achieved using randomness
extraction with the output from several rounds.

Practically, a faithful implementation of a Bell test is
conditioned on closing three major loopholes. (a) The locality
loophole: the generation of Alice’s input a should be space-
like separated from Bob’s measurement y, and likewise for b
and x. If this condition is not satisfied, then a Bell inequality
can be violated even with LHVMs by signaling the inputs.
(b) The efficiency loophole: the efficiency must be higher
than a threshold to ensure the violation. If the realized ef-
ficiency is lower than the threshold, the violation cannot be
observed without postselecting the outputs. (c) The so-called
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freedom-of-choice loophole: the inputs should not be in-
fluenced by the hidden variables in the LHVM. Clearly, if
the LHVM can determine the inputs, then any probability
distribution P(ab|xy) can be realized with a LHVM. This
motivates efforts to choose the inputs randomly or at least in
a manner that cannot be controlled by a LHVM.

The history of testing Bell’s inequality is the history of try-
ing to close all the possible loopholes, especially the locality
and efficiency loopholes. Only recently, these loopholes were
simultaneously closed in Bell tests using physical random
number generators [19-22]. Nevertheless, the freedom-of-
choice loophole cannot be perfectly closed, as we can never
unconditionally certify the randomness without a faithful Bell
test. This seems to create a “bootstrapping problem,” in which
unconditional randomness is required in order to produce
unconditional randomness. In principle, it is not possible to
rule out superdeterminism, the philosophical argument that
the universe is completely deterministic.

When considering the practical case of certifying random-
ness in the presence of classical noise or an adversary, we
can still assume the possibility that the input is random with
respect to the measurement devices. In an experiment, well-
calibrated quantum random number generators are used, with
the assumption that their output values are independent of
any prior events. In other words, the measurements performed
in Bell tests are independent of the random inputs, named
by measurement independence [23]. Moreover, photons from
cosmic sources can be considered as random inputs in both
theory and experiment, by pushing measurement-dependence
constraints back into cosmic history [24-26]. Nevertheless,
this randomness is guaranteed by certain physical models,
which can be inaccurate and hence make the random inputs
partially predictable.

Without relying on any physical model, it is a common
belief that humans have free will, by which we mean humans
can make choices that are indeterministic consequences of
prior physical conditions. Assuming this capacity, human
choices as inputs in a Bell test make it possible to circumvent
the bootstrapping problem described earlier. At the same time,
human choices are not perfectly unpredictable, i.e., sequences
of such choices tend to show patterns even when a person is
attempting to make random choices. For example, we mea-
sured the uniformity of the human-generated random numbers
from November 30 to December 1, 2016, in the BIG Bell Test.
Using the well-known statistical test suite NIST SP 800-22
(“the NIST tests”), we found that the human random numbers
passed only two of the 14 different tests. In fact, we can easily
find “000000” or “010101” patterns in the human random
numbers. In contrast, our quantum random number generator
passed all the tests.

Such patterns by themselves do not open the freedom-of-
choice loophole because it is possible for two variables, here
xy and A, to be independent even if one of them, here xy,
is biased and thus somewhat predictable. Nevertheless, it is
interesting to consider the possibility of some predictability
arising in human choices due to the influence of physical
environment, which might be correlated to hidden variables.
Indeed, John Bell himself discussed this possibility [1]. If
such influence was too strong, then a LHVM could explain a
Bell inequality violation through a limited freedom of choice.

T\A/ly
Alice = Bob
| |

a b

FIG. 1. Bell test with imperfect input randomness.

These qualitative notions regarding partially predictable in-
puts in Bell tests have been precisely investigated via theoret-
ical analysis [23,27-31].

In this work, we exploit human randomness generated via
free will as the input of Bell tests. Human randomness is
collected in a worldwide project known as the BIG Bell Test
[32], initiated by researchers from the Institute of Photonic
Sciences (ICFO). The basic idea of this project is to apply
human free will in a state-of-the-art physics experiment, the
Bell test. Here, we employ two different Bell inequalities,
analyzing the requirements that the human randomness should
satisfy to guarantee faithful violations of the Bell tests.

II. MEASUREMENT DEPENDENCE

This section reviews the theory of Bell tests with imperfect
inputs, i.e., measurement dependence. Given LHVMs, the
probability distribution can be represented as

P(ablxy) = Y P()P(alx)P(blyh). )
A

where A is the predetermined strategy shared by Alice and Bob
and P(}) is the probability of choosing A. In contrast, Eq. (2)
cannot generally describe the probability distribution gener-
ated by measurement of a quantum state. Bell inequalities can
be regarded as witnesses of a quantum probability distribu-
tion, which separates it from the probability distributions of
Eq. (2).

In the ideal case, the inputs are assumed to be perfectly
random,; i.e, the adversary does not have extra information of
x and y better than blindly guessing. Nevertheless, in practice,
input randomness can be imperfect and determined by some
local hidden variable A according to P(xy|A). In this case, as
shown in Fig. 1, an adversary that has access to A can realize
the measurement by exploiting such information to have a
larger set of LHVMs with probability distributions of the form

P(abxy) = ZP(?»)P(xyI/\)P(aIx?»)P(bly/\)- 3)
A

To understand how P(xy|A) characterizes the input
randomness, we consider the lower bounds of P(xy|A)
defined as

| = 1}61;){1 P(xy|A). 4)

Focusing on the case with binary inputs hereafter, we have
[ € [0, 1/4]. Let us consider two extreme cases. First, when
the inputs are perfectly random, we have P(xy|1) = P(xy) and
[ = 1/4. In this case, we recover the probability distribution
given in Eq. (2). Second, when the inputs are totally deter-
mined by A, i.e., (xy) = f(A), then the probability becomes
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P(xy|L) = 8(xy),rn)» Where § is the Kronecker delta and we
have [ = 0. In this case, realizing any probability distribution
is possible and furthermore, violation of a Bell inequality with
a LHVM is possible.

From those scenarios, we can infer that / measures the
input randomness. Thus, a smaller / value indicates a less
random input or that Alice and Bob have more information of
the inputs. In the literature, the problem of Bell tests with im-
perfect inputs is called measurement dependence. Contrarily,
given [, a probability distribution that cannot be described by
Eq. (3) is known as measurement-dependent nonlocality. We
now see that in a Bell test with human inputs, the assumption
that humans have free will can be represented with / > 0, im-
plying at least partial measurement independence. In the sub-
sequent texts, we consider two Bell inequalities and show the
Bell value dependence on the input randomness parameter /.

The coefficients of the Clauser-Horne-Shimony-Holt
(CHSH) [33] are given by Capy = (—1)*™*™. Suppose the
average probability P(xy) = Y, P(A)P(xy|A) equals 1/4 and
P(ab|xy) is no-signaling [34], then the classical upper bound
Jc(1) with imperfect input randomness characterized by [ is
[23,31]

Je() =41 =20). (5)
In experiment, the Bell inequality is violated only when the

observed Bell value is larger than J¢ (/). To do so, a maximally
entangled state is prepared

(W) = (|HV) + [VH))/V2, (6)
and measured in the projecting bases
A0 =2 Boo) =22,
V2 (7
AO) =X, Bio)= T2,
V2

where Ay and A; (By and B;) are the measurement bases of
Alice (Bob) when the inputs are 0 and 1, respectively; Z =
{IH), |V)}and X = {(|H) +|V))/~/2, (H) — [V))/v/2}.

The other Bell inequality we considered is known as the
measurement-dependent local (MDL) inequality proposed by
Piitz et al. [23], which can be represented by

[P(0000) — (1 —31)(P(0101) + P(1010) + P(0011)) < 0.
®)

It is proven that when [ < P(xy|A) the probability distribution
given in Eq. (3) cannot violate such an inequality. To violate
this inequality with quantum settings, we need to prepare a
nonmaximally entangled state

v 1 (ﬁ—l

|HV) +

ks V3+1
V3 2 2
and measure in the bases:

Ap(0) = {cos(0) |H) +sin(0) |V) , sin(0) |H) — cos(0) [V)},
A1(0) = Ag(0 — 7 /4),
Bo(0) = Ao(0 + 7 /2),

with 8 = arccos+/1/2 + 1/:;5 ~ 13.28°. The state and mea-
surement are optimized by maximizing the violation of the

IVH)) €))

Bi(6) = A(6 + 7/2), (10)

Bell inequality (8). For the detailed discussion of the opti-
mization, please refer to Ref. [23].

III. EXPERIMENTAL SETUP

We experimentally test the Bell inequalities using human-
generated random numbers. As shown in Fig. 2(b), we first
generate a 780 nm pulsed light as pump via a second-
harmonic generation (SHG) process. We set the 1560 nm
seed laser to 10 ns pulse width at 100 kHz, which is then
amplified and frequency up-converted to 780 nm as the pump.
The pump is then focused on a periodically poled potassium
titanyl phosphate (PPKTP) crystal to create photon pairs
at 1560 nm via spontaneous parametric down conversion.
Down-converted photon pairs interfere at the polarizing beam
splitter (PBS) in a Sagnac based setup [35] to create entangled
pairs. A nonmaximally entangled state can be generated by
adjusting the input pump polarization. The entangled pairs are
then collected into single mode fibers for detection.

The source laboratory and the measurement laboratory are
chosen in a straight line. As shown in Fig. 2(a), the source
is in the middle, and Alice’s (Bob’s) measurement laboratory
is 87 =2 m (88 £ 2 m) away. Spatial separation ensures the
measurements in Alice’s laboratory will not affect those in
Bob’s laboratory, and vice versa. In each pulse period, a
random number (if there is one) controls the Pockels cell
by applying a zero or half-wave voltage, setting the basis to
Ap/A; for Alice (or By/B; for Bob). We compensate polariza-
tion drift and align the reference frame using a polarization
controller and a half-wave plate. After the measurement using
a Pockels cell and a PBS, photons are detected using super-
conducting nanowire single-photon detectors (SNSPDs). Note
that the total response time of the Pockels cell and the SNSPD
is around 150 ns, less than the ~290 ns separation between
the source and the detection laboratory.

The human-generated random numbers are collected and
distributed to our laboratory by ICFO, who initiated the BIG
Bell Test project. In this project, people play an online game
to generate random numbers, which are then transmitted
to the experimental labs. We receive the human-generated
random numbers with a Python program and immediately
redistribute them to a field-programmable gate array (FPGA)
that generates the signal pulses and sync pulses based on the
random numbers, which is sent to the measurement station for
the experiments. The system is set at 100 kHz frequency to
generate signal pulses as soon as a batch of random numbers
comes in. We record all the detection results and the random
numbers using a time-to-digital convertor (TDC) for off-line
data analysis. The peak incoming random number rate is a
few thousand bits per second, thus the system waits in most
of the time for the incoming random numbers. Note that
the human-generated random numbers are directly used as
measurement bases without any modification.

IV. EXPERIMENTAL RESULTS

In our experiment, we first adjust pump polarization di-
agonally to generate a maximally entangled state |W) =
(|HV) + |[VH))/~/2. We measure the visibility in the hor-
izontal and vertical basis as (99.2+1.1)% and in the
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FIG. 2. Bell test using imperfect input randomness. (a) Positions of the entanglement source, Alice’s and Bob’s detection. Distance between
the source and Alice (Bob) is 87 =2 m (88 £ 2 m). (b) Schematic setup of the Bell test. A distributed feedback (DFB) laser diode (LD) at
A = 1560 nm is modulated at 100 kHz with 10 ns width. The pulse is amplified with an erbium-doped fiber amplifier (EDFA) and then
up-converted to 780 nm via a second-harmonic generation (SHG) in an in-line periodically poled lithium niobate (PPLN) waveguide. The
residual 1560 nm light is filtered with a wavelength-division multiplexer (WDM) and a filter. After polarization adjustment using a half-wave
plate (HWP) and a liquid crystal (LC), the 780 nm pump light is focused to a periodically poled potassium titanyl phosphate (PPKTP) crystal
in a Sagnac setup to generate entangled pairs. A series of dichroic mirrors (DMs) are used to remove the residual pump light at 780 nm and
the fluorescence before the entangled pairs are collected. In Alice’s and Bob’s detection station, a polarization controller (PC), a quarter-wave
plate (QWP), a HWP, and a polarizing beam splitter (PBS) are used to align the reference frame. Random numbers control the Pockels cell to
dynamically select the bases. Superconducting nanowire single-photon detectors (SNSPDs) are used to detect the photons after the PBS.

diagonal and antidiagonal basis as (98.0 £ 1.0)%. We fur-
ther conduct a state tomography and find the fidelity to the
ideal state is approximately 99.1% with maximum likeli-
hood estimation. By setting the measurement bases according
to Eq. (7), we measure the S value to be 2.804 £ 0.074,
with E(A;, B) = —0.751, E(A;, By) = 0.651, E(A;, B)) =
0.657, and E(A;, By) = 0.745. Here, the average value is
defined by E(A,, By) = Y (—1)*™*™P(abxy). The classical
upper bound of the measurement-dependent LHVM is given
by Eq. (5). To achieve the experimentally obtained Bell
value with measurement-dependent LHVM, we thus have / <
0.1495 £ 0.0092. On the other hand, when the input human
randomness has [ > 0.1495, the experimentally observed data
cannot be explained with LHVMs.

Next, we test the MDL inequality using the human random
numbers. The MDL inequality had been experimentally tested
by Aktas et al. [36], but without closing the locality or
freedom-of-choice loophole. In our experiment, the freedom-
of-choice loophole is closed via the human free will. We
separate the measurement station, so the measurement devices
cannot communicate with each other. Note that the locality
loophole is not fully closed because the random number is not
generated locally at the measurement station. In state prepa-
ration, we prepare the nonmaximally entangled state given
in Eq. (9), by adjusting the pump laser to cos(69.1°) |H) +

sin(69.1°) |[V). We perform a state tomography to characterize
the produced state and calculate the fidelity to be 98.9% with
maximum likelihood estimation.

Finally, we analyze the recorded data to count the co-
incidence events and calculate the probabilities P(abxy).

TABLE I. Experimental values of the MDL inequality measure-
ment using human random numbers. MDL value /, = 0.10 £ 0.05
is obtained by calculating all the data. Bases A¢By, AoB1, A1 By, and
A,B; are measured to obtain the probabilities of P(0000), P(0101),
P(1010), and P(0011) for analysis in Eq. (8). In the probability
P(abxy), xy denotes Alice’s and Bob’s bases while ab denotes the
output bits Alice and Bob count for coincidence. The column “Total”
refers to the total coincidence count for all Alice’s and Bob’s outputs,
and “Measured” refers to the coincidence count of the specific
outputs listed in P(abxy). The result sums all the experimental trials
between November 30 and December 1, 2016. Statistical fluctuation
is calculated using 1 hour as an integration time.

Basis Measured Total P(abxy)

ApBy 2833 34408 P(0000) = 0.02093 + 0.01099
ApB, 100 40085 P(0101) = 0.00074 + 0.00048
ABy 193 41009 P(1010) = 0.00143 £+ 0.00076
A B, 86 19853 P(0011) = 0.00064 + 0.00046
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TABLE II. Experimental values of the MDL inequality mea-
surement using quantum random numbers. MDL value [, = 0.106 £
0.007 is obtained by calculating all the data. Column indicators are
the same as in Table I. The experiment is performed after the test with
human random numbers, using the same setup, but quantum random
numbers are substituted instead. Statistical fluctuation is calculated
using 5 min as an integration time.

Basis Measured Total P(abxy)

AoBy 38911 463901 P(0000) = 0.02101 £ 0.00062
ApBy 1214 453939 P(0101) = 0.00066 % 0.00009
A By 3246 471152 P(1010) = 0.00175 £ 0.00023
A B, 1577 462591 P(0011) = 0.00085 % 0.00007

The result is summarized in Table I. All experimental trials
performed between November 30 and December 1, 2016,
were recorded, when the public helped us generate random
numbers. Results of the experiment are divided into several
sections for statistical analysis, with each section including 1
hour of data. We measure the four probabilities P(abxy) and
calculate the MDL Bell inequality in Eq. (8) for a given /.
As this inequality cannot be violated with LHVM satisfying
I < P(xy|)r), we calculate the smallest possible value of / such
that the equal sign is saturated and denote it as [y. When the
input randomness has a larger value of [ > [y, the observed
result cannot be explained with LVHMs.

We obtain [y = 0.10 &£ 0.05 for the MDL inequality using
human random numbers. For comparison, we use quantum
random number generators for the basis selection. With the
rest of the setup remaining the same, we obtain /o = 0.106 &
0.007 which gives a similar /y value with less fluctuation, as
it is easier to accumulate more data using quantum random
numbers than using human random numbers. The result is
summarized in Table II. For human-generated random num-
bers, we received several thousand bits per second at peak

times, while only tens of bits per second at idle times. For
quantum random numbers, we have 200 kHz steady random
numbers controlling the basis. In total, we accepted and used
around 80 Mbits in the human random number based MDL
inequality test in two days. For comparison, we test the
inequality with quantum random numbers in around 1.5 hours,
consuming more than 1 Gbits in the process.

V. DISCUSSION

In this work, we realized a Bell test with the assistance of
human free will to close the freedom-of-choice loophole. We
experimentally tested the CHSH and MDL inequalities with
the measurement stations space-likely separated. Comparing
the results of the two inequalities, we could see that the MDL
inequality tolerates more imperfections of input randomness,
in the sense of influence by the hidden variables in the
LHVM. Future work could extend the results to randomness
amplification that amplifies imperfect human randomness to
almost uniform randomness.
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