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We address two related unanswered questions in maximum revenue multi-item auctions. Is dominant-

strategy implementation equivalent to the semantically less stringent Bayesian one (as in the case of Myerson’s

1-item auction)? Can one �nd explicit solutions for non-trivial families of multi-item auctions (as in the 1-item

case)? In this paper, we present such natural families whose explicit solutions exhibit a revenue gap between the

two implementations. More precisely, consider the k-item n-buyer maximum revenue auction where k,n > 1

with additive valuation in the independent se�ing (i.e., the buyers i have independent private distributions Fi j
on items j). We derive exact formulas for the maximum revenue when k = 2 and Fi j are any IID distributions

on support of size 2, for both the dominant-strategy (DIC) and the Bayesian (BIC) implementations. �e

formulas lead to the simple characterization that, the two models have identical maximum revenue if and only

if selling-separately is optimal for the distribution. Our results also give the �rst demonstration, in this se�ing,

of revenue gaps between the two models. For instance, if k = n = 2 and Pr {XF = 1} = Pr {XF = 2} = 1

2
, then

the maximum revenue in the Bayesian implementation exceeds that in the dominant-strategy by exactly 2%;

the same gap exists for the continuous uniform distribution XF over [a,a + 1] ∪ [2a, 2a + 1] for all large a.

Additional Key Words and Phrases: maximum revenue; multi-item auction; dominant strategy; Bayesian

implementation

1 INTRODUCTION
We consider the k-item n-buyer maximum revenue auction with additive

1
valuation in the inde-

pendent se�ing (i.e., the buyers i have independent private distributions F ji over the range [0,∞)
on items j). How should the optimal mechanisms be designed?

Myersons’s classical paper [24] elegantly solved the problem for the single item case. For multiple

items (k > 1), the problem is much more complex with an extensive literature (see Related Work
below). Much progress has been made, but many interesting questions remain open. In this paper

we focus on two such questions that arise naturally.

Firstly, there are two standard models of mechanism design for auctions, known respectively as

dominant-strategy incentive-compatible (DIC) and Bayesian incentive-compatible (BIC) mechanisms.

Formally, the BIC constraints look much weaker than the DIC constraints. It is thus a remarkable

feature of Myersons’s theory that exactly the same maximum revenue is achieved by the BIC

mechanisms and the DIC mechanisms for single-item auctions. Can this equivalence hold for

k > 1?

Q1. For k > 1, can Bayesian incentive-compatible (BIC) mechanisms ever produce strictly more

revenue than the dominant-strategy incentive-compatible (DIC) mechanisms?

1
Namely, for each buyer i , the valuation of a set S of items is the sum of valuations for all the items in S.

Author’s email address: andrewcyao@tsinghua.edu.cn .

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM. XXXX-XXXX/2017/1-ART1 $15.00

DOI: h�p://dx.doi.org/10.1145/3033274.3085120

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EC’17, June 26–30, 2017, Cambridge, Massachusetts, USA.       © 2017   ACM  ISBN 978-1-4503-4527-9/17/06…$15.00. 
DOI: http://dx.doi.org/10.1145/3033274.3085120 
 

andrewcyao@tsinghua.edu.cn


1 Andrew Chi-Chih Yao

(A substantial literature exists on the above DIC versus BIC question: see Related Work below).

For our second question, note that Myerson’s characterization of optimal mechanisms for k = 1

leads to explicit formulas for the maximum revenue. For k > 1, in the single buyer (n = 1) case,

there is a rich collection of sophisticated results (e.g., [14–19, 23, 25, 28]), where explicit expressions

for optimal revenue are obtained for certain discrete and continuous distributions. However, for

k > 1 and n > 1, there do not seem to be any interesting results of this kind in the literature. �us

we pose the following question:

Q2. For k > 1 andn > 1, can we obtain explicit expressions of the optimal revenue for interesting

families of distributions?

In this paper we address questions Q1 and Q2. In the direction of Q2, we derive exact formulas

for the maximum revenue for both DIC and BIC implementations for k = 2 and any n > 1, where

the 2n distributions F ji are IID with a common F of support size 2. As a by-product, these formulas

give an answer to Q1, showing the BIC optimal revenue expression to be strictly greater than that

of DIC for a broad range of parameters. In fact the formulas lead to the simple characterization

that, the two implementations have identical maximum revenue if and only if selling-separately

is optimal for the distribution. For instance, if k = n = 2 and Pr {XF = 1} = Pr {XF = 2} = 1

2
,

then the maximum revenue in the Bayesian implementation exceeds that in the dominant-strategy

by exactly 2%. A natural extension to the continuous case shows that the same 2% gap holds for

the uniform distribution over [a,a + 1] ∪ [2a, 2a + 1] as a → ∞. We also remark that our result

complements a theorem in [30] that the BIC maximum revenue is always upper bounded by a

constant factor of the DIC maximum revenue.

Beyond providing an answer to Q1 and Q2, our techniques may have several other contributions.

Firstly, it is demonstrated in a natural context how to turn a DIC mechanism into a BIC mechanism

with increased revenue (see a speci�c example in Section 3.3). Secondly, our proposed optimal

mechanisms, while applicable to arbitrary n buyers, have simple descriptions. Each mechanism

employs only a pure hierarchical allocation rule. Such simple designs may lend these mechanisms

to other applications. Finally, the problem of �nding explicit exact solutions to multi-item auctions

is an interesting open area. Economic concepts and interpretations o�en value precision over

constant approximations. A collection of exactly solvable auction problems could be valuable for

other econometrics explorations.

�e main results of this paper will be stated in Section 3 with proofs given in Sections 4 and 5.

Formal descriptions of our mechanisms and formulas will be illustrated through concrete examples

(see Example 1 in Section 3.1 and 3.3) to help the understanding.

Related Work

Regarding Q1, when the independence condition on the distributions F ji is dropped, then the

answer is known. [9] showed BIC can generate unbounded more revenue than DIC, when F ji are

correlated across buyers even for k = 1. Recently, [29] showed in some instance with k > 1, BIC

can generate strictly more revenue than DIC, when F ji are correlated across items. �ere are other

examples (e.g. [13, 23]) where DIC and BIC are shown to be inequivalent in revenue (and other

a�ributes), but their models are farther away from our model under consideration here.

We note that much progress has been made on the computational aspects of multi-item auctions.

�e intrinsic complexity of computing the optimal revenue has been investigated (e.g. [8, 10];

e�cient algorithms have been found in a variety of circumstances (e.g. [4, 5, 11]); furthermore,

simple approximation mechanisms have been extensively studied in various environments (e.g.

[1, 6, 7, 12, 18, 21, 22, 26, 27, 30]).
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2 PRELIMINARIES
2.1 Basic Concepts
Let F be a multi-dimensional distribution on [0,∞)nk . Consider the k-itemn-buyer auction problem

where the valuation n × k matrix t = (t ji ) is drawn from F . Each buyer i has ti ≡ (t1

i , t
2

i , · · · , tki ) as

his valuations of the k items. We also refer to ti as buyer i’s type, and t as the type pro�le of the

buyers (or pro�le for short). For convenience, let t−i denote the valuations of all buyers except buyer

i; that is, t−i = (ti′ | i ′ , i). Note that t j , the j-th column of the matrix t , contains the valuations of

all the buyers on item j.

A mechanism M speci�es an allocation q(t) = (q ji (t)) ∈ [0,∞)nk , where q ji (t) denotes the proba-

bility that item j is allocated to buyer i when t = (t ji ) is reported as the type pro�le to M by the

buyers. We require that

∑n
i=1

q ji (t) ≤ 1 for all j , so that the total probability of allocating item j is at

most 1. M also speci�es a payment si (t) ∈ (−∞,∞) for buyer i .
�e utility ui (t) for buyer i is de�ned to be ti · qi (t) − si (t), where ti · qi (t) stands for the inner

product

∑k
j=1

t ji q
j
i (t). Let ui (ti ← t ′i , t−i ) = ti · qi (t ′i , t−i ) − si (t ′i , t−i ), i.e. the utility buyer i would

obtain if he has type ti but reports to the seller as t ′i . �e expected allocation q̄i (ti ) for buyer i is

de�ned to be Et−i (q(ti , t−i )). �e expected utility ūi (ti ) for buyer i is de�ned to be Et−i (u(ti , t−i )).
Also let ūi (ti ← t ′i ) = Et−i (ūi (ti ← t ′i , t−i )).

�e following formulas are well known:

Transfer Equations: ui (ti ← t ′i , t−i ) = ui (t ′i , t−i ) + (ti − t ′i ) · qi (t ′i , t−i ) for all ti , t
′
i , t−i .

Averaged Form: ūi (ti ← t ′i ) = ūi (t ′i ) + (ti − t ′i ) · q̄i (t ′i ) for all ti , t
′
i .

Two kinds of mechanisms have been widely studied, referred to as Dominant-strategy and

Bayesian implementations as speci�ed below.

Dominant-strategy: IR conditions: ui (t) ≥ 0 for all i and t .
DIC conditions: ui (ti , t−i ) ≥ ui (ti ← t ′i , t−i ) for all ti , t

′
i and t−i , or equivalently,

DIC conditions (alternate): ui (ti , t−i ) − ui (t ′i , t−i ) ≥ (ti − t ′i ) · qi (t ′i , t−i ) for all ti , t
′
i and t−i .

A mechanism is called individually rational (IR)/dominant-strategy incentive compatible
(DIC), if it satis�es the IR conditions/the DIC conditions, respectively.

Bayesian: BIR conditions: ūi (ti ) ≥ 0 for all i and ti .
BIC conditions: ūi (ti ) ≥ ūi (ti ← t ′i ) for all ti , t

′
i , or equivalently,

BIC conditions (alternate): ūi (ti ) − ūi (t ′i ) ≥ (ti − t ′i ) · q̄i (t ′i ) for all ti , t
′
i .

A mechanism is called Bayesian individually rational (BIR)/Bayesian incentive compatible
(BIC), if it satis�es the BIR conditions/the BIC conditions, respectively.

Let s(x) = ∑n
i=1

si (x) be the total payments received by the seller. For any mechanism M on F ,

let M(F ) = Ex∼F(s(x)) be the (expected) revenue received by the seller from all buyers. �e optimal
revenue is de�ned as REVD (F ) = supM M(F ) when M ranges over all the IR-DIC mechanisms.

Similarly, in the Bayesian model, the optimal revenue is de�ned as REVB (F ) = supM M(F ) where

M ranges over all the BIR-BIC mechanisms. As a benchmark for comparison, let SREV (F ) stand

for the revenue yielded when each item is sold separately by using the optimal mechanism of [24].

2.2 Hierarchy Allocation
�e optimal BIC and DIC mechanisms proposed in this paper for n-buyer 2-item auctions will be

described using the formalism of hierarchy allocations. �e concept of hierarchy allocation was

�rst raised in [2, 3] for one item, and later for multi-items in [4]. Here we only need the concept as

a convenient language to succinctly present our mechanisms.

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Consider an n-buyer 1-item auction. A hierarchy allocation scheme H is speci�ed by a mapping

Rank : T → R∪{∞}. Given a type t ∈ (t1, t2, . . . , tn ), schemeH allocates the item uniformly among

the set of buyers i with the smallest ranking. IfRank(ti ) = ∞ for all i , then no allocation will be made

to any buyer. For convenience, we use the notationH = [τ11, . . . ,τ1a1
;τ21, . . . ,τ2a2

; . . . ;τ`1, . . . ,τ`a` ]
with the understanding Rank(τdm) = d for all 1 ≤ d ≤ `, 1 ≤ m ≤ ad , and Rank(t) = ∞ for any

type t not listed among τdm .

In an n-buyer k-item auction, a hierarchy mechanism M uses a hierarchy allocation function
speci�ed by a k-tupleH = (H 1,H 2, · · · ,Hk ), where each H j

is a hierarchy allocation scheme to be

used for item j; also a utility function ui (t) for each buyer i needs to be speci�ed for M . Note that

the payment for buyer i is determined by si (t) =
∑

j q
j
i (t)t

j
i − ui (t).

3 MAIN RESULTS
In this paper, we solve for REVD (F ) and REVB (F ) in the n-buyer, 2-item case when F consists of

2n IID’s of a common F with support size 2. Any such F can be speci�ed by a 4-tuple δ = (n,p,a,b)
where n ≥ 2 is an integer, 0 < p < 1, and 0 ≤ a < b. Let Fδ denote the valuation distribution for

the n-buyer 2-item auction, where the distributions F ji for buyer i and item j are independent and

identical (IID) copies of random variables X de�ned by Pr {X = a} = p and Pr {X = b} = 1 − p.

Assuming additive valuation on items for each buyer, we are interested in determining REVD (Fδ )
and REVB (Fδ ), the maximum revenue achievable under IR-DIC and BIR-BIC, respectively, for

distribution Fδ . We �nd two benchmarks relevant, SREV (Fδ ) and sb = 2(1 − pn)b: the former is

the revenue obtained by selling separately each item using Myerson’s optimal mechanism; the

la�er is the revenue by selling separately each item at price b.

Fact 1. SREV (Fδ ) = 2 ·max{(1 − pn)b, pn−1a + (1 − pn−1)b}.
It su�ces to show that, for 1-item auction with n buyers and IID distributions Fδ , the maxi-

mum revenue possible is equal to max{(1 − pn)b, pn−1a + (1 − pn−1)b}. According to Myerson’s

optimal auction theory, the revenue maximization problem in this se�ing reduces to the welfare

maximization problem where the valuation is replaced by a modi�ed valuation (dependent on

the distribution), called the ironed virtual valuation ϕ. It is easy to show that for the distribu-

tion Fδ , ϕ(a) = (a − (1 − p)b)/p and ϕ(b) = b. �e maximum welfare achievable is given by

pn max{ϕ(a), 0} + (1 − pn)ϕ(b), which is exactly max{(1 − pn)b, pn−1a + (1 − pn−1)b}. �is proves

Fact 1.

3.1 The Main Theorem
For any real-valued function G, we use G+ to denote the nonnegative function de�ned as G+ =
max{G, 0}. �e functions rD (δ ) and rB (δ ) below will be used to express revenues.

De�nition 3.1. Let p0 = p
2n

, p1 = 2np2n−1(1 − p), and p2 = 2pn
(
1 − pn − npn−1(1 − p)

)
. De�ne

rD (δ ) = 2(1 − pn)b + p0

[
2a − 1 − p2

p2
(b − a)

]
+
+ p1

[
a − 1 − p

2p
(b − a)

]
+

+ p2

[
a − 1 − p

p
(b − a)

]
+

rB (δ ) = 2(1 − pn)b + p0

[
2a − 1 − p2

p2
(b − a)

]
+
+ (p1 + p2)

[
a − 1 − p

2p
(b − a)

]
+

Theorem 3.2 (Main Theorem). REVB (Fδ ) = rB (δ ) and REVD (Fδ ) = rD (δ ).

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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a v1 v2 v3 b
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REVB 
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Fig. 1. REVB ,REVD , and SREV as functions of b

Corollary 3.3.

(a) REVB (Fδ ) = REVD (Fδ ) = SREV (Fδ ) if b ≥ a(1 + p)/(1 − p),
REVB (Fδ ) > REVD (Fδ ) > SREV (Fδ ) otherwise.

(b) REVD (Fδ ) = REVB (Fδ ) if and only if Selling-Separately is optimal.

Remark 1. For �xed n,p,a, the functions rB (δ ), rD (δ ) and SREV (Fδ ) are each continuous, piecewise-

linear functions in b as shown in Figure 1. Breakpoints of linearity occur at v1 =
1+p2

1−p2
a, v2 =

1

1−pa,

and v3 =
1+p
1−pa along the b-axis. �e last two additive terms of rB (δ ) are 0 when b ≥ v1, and b ≥ v3,

respectively. Similarly, the last three additive terms of rD (δ ) are 0 when b ≥ v1, b ≥ v3, and b ≥ v2,

respectively.

Remark 2. �e formula for rD (δ ) can be interpreted as follows (and likewise for rB (δ )). �e �rst

term 2(1 − pn)b is equal to sb . �e three additive terms represent the extra revenue, beyond selling-

separately at b, that can be gleaned from three speci�c subsets of pro�les. (�ese subsets are de�ned

as S0, S1, S2 in De�nition 5 later, with non-zero probability of occurrence p0,p1,p2, respectively.)

Corollary 3.3 can be derived as follows. When b ≥ v3 =
1+p
1−pa, all terms in square brackets in

De�nition 1 are 0, hence rD (δ ) = rB (δ ) = 2(1−pn)b = sb . As by de�nition sb ≤ SREV (Fδ ) ≤ rD (δ ),
we conclude rD (δ ) = rB (δ ) = SREV (Fδ ) in this case. When b < v3, we have a − 1−p

2p (b − a) > 0,

implying

rB (δ ) − rD (δ ) = p2

( [
a − 1 − p

2p
(b − a)

]
+
−

[
a − 1 − p

p
(b − a)

]
+

)
> 0.

To compare rD (δ ) with SREV (Fδ ) when b < v3, notice that the two continuous piecewise-linear

functions are equal when b = a and b = v3. It is easy to check from their formulas that, rD (δ )
strictly dominates SREV (Fδ ) at both breakpoints v1 and v2 interior to [a,v3]. We conclude that

rD (δ ) > SREV (Fδ ) over the entire interval (a,v3). Corollary 3.3(a) follows. Corollary 3.3(b) follows

immediately from (a). �

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Example 1. As an illustration, consider the case δ = (n,p,a,b) with n = 2, p = 1

2
, a = 1, b = 2.

�e formulas in the Main �eorem tell us REVD (Fδ ) = 1

8
(3 + 11b) for b ∈ [2, 3), and REVB (Fδ ) =

1

16
(9 + 21b) for b ∈ [ 5

3
, 3). �us for b = 2 we have REVD (Fδ ) = 25/8 = 3.125 and REVB (Fδ ) =

51/16 = 3.1875, with a gap of 2%. Note that grand bundling yields only revenue 45/16, while selling

separately yields revenue 3, both strictly less than 3.125.

Open�estions: It is an interesting open question to determine whether the 2% gap in Example 1

is the largest gap between DIC and BIC revenue for the family of distributions considered in our

model. It would also be interesting to extend our results to more general models, say, where the

two items have distinct IID distributions.

3.2 Optimal Mechanisms
�e optimal revenue rD (δ ) and rB (δ ) stated in the Main �eorem can be realized, respectively,

by the IR-DIC mechanism MD,δ and the IR-BIC mechanism MB,δ de�ned below. First, we name

the characteristic functions for the three intervals where the individual terms of rD (δ ), rB (δ ) are

non-zero.

De�nition 3.4. De�ne 
αp,a,b = 1 if b < v1, and 0 otherwise.

βp,a,b = 1 if b < v3, and 0 otherwise.

γp,a,b = 1 if b < v2, and 0 otherwise.

�e subscripts in αp,a,b , γp,a,b , βp,a,b can be dropped when p,a,b are clear from the context.

Note that, if desired, the formulas for rD (δ ) and rB (δ ) can be wri�en using α , β,γ as multipliers in

place of the notation G+ ≡ max{G, 0}.

De�nition 3.5. In what follows, the term pro�le refers to a pro�le in the support of Fδ , a type
refers to a type in {a,b} × {a,b}. For any pro�le t and j ∈ {1, 2}, we say t j is cheap if t ji = a for

all 1 ≤ i ≤ n (we also say item j is cheap); otherwise t j is non-cheap. Call a pro�le t 1-cheap if t
has exactly 1 cheap item. We use I (t) to denote the subset of buyers i with ti , (a,a), that is, only

excluding those who value both items at a. Note that, if t is 1-cheap, then |I (t)| is equal to the

number of b’s in t (and all appearing in the same column).

We now de�ne mechanism MD,δ and MB,δ below, using the language of hierarchy mechanism.

First divide the range (a,∞) of b into 4 subintervals: I1 = (a,v1), I2 = [v1,v2), I3 = [v2,v3) and

I4 = [v3,∞).

ALGORITHM 1: MechanismMD,δ

Case 1. b ∈ I1. Use the hierarchy allocation function (H1,H2) where H1 = [(b,b); (b,a); (a,b); (a,a)] and

H2 = [(b,b); (a,b); (b,a); (a,a)];
Case 2. b ∈ I2. Use the hierarchy allocation function (H1,H2) where H1 = [(b,b); (b,a); (a,b)] and

H2 = [(b,b); (a,b); (b,a)];
Case 3. b ∈ I3. If t = (ti , t−i ) with t−i being the lowest pro�le (a,a)n−1

, then o�er items 1 and 2 to buyer i as

a bundle at price a + b. Otherwise, use the hierarchy allocation function (H1,H2) where H1 = [(b,b); (b,a)],
H2 = [(b,b); (a,b)];
Case 4. b ∈ I4. Use the hierarchy allocation function (H1,H2) where H1 = [(b,b); (b,a)], H2 = [(b,b); (a,b)];

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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�e payment of M(Fδ ) is determined by the following utility function: for 1 ≤ i ≤ n, t = (ti , t−i ),

ui (ti , t−i ) =


(b − a)αn if ti = (b,a) or (a,b), and t−i = (a,a)n−1

(b − a)(αn + β) if ti = (b,b), and t−i = (a,a)n−1

(b − a) γ
1+ |I (t−i ) | if ti = (b,b), t−i is 1-cheap

0 otherwise.

(1)

Remark 3. Strictly speaking, MD,δ in Case 3 is not a hierarchy mechanism. We abuse the term

slightly for convenience. Observe that, when b ∈ I4, MD,δ can be described as selling each item

separately at price b with a particular tie-breaking rule as dictated by the Case 4 allocation function

(H 1,H 2). When b ∈ I3, MD,δ can be described as follows: if t = (ti , t−i ) with t−i = (a,a)n−1
, then

o�er items 1 and 2 to buyer i as a bundle at price a + b; otherwise sell each item separately at price

b with a particular tie-breaking rule as dictated by the Case 3 allocation function (H 1,H 2).

ALGORITHM 2: MechanismMB,δ

Case 1. b ∈ I1: Use the hierarchy allocation function as de�ned in Case 1 of MD,δ ;

Case 2. b ∈ I2 ∪ I3: Use the hierarchy allocation function as de�ned in Case 2 of MD,δ ;

Case 3. b ∈ I4: De�ne MB,δ = MD,δ ;

In both Case 1 and 2, the payment is de�ned by the same utility function ui (ti , t−i ) as in MD,δ
with only one exception: if ti = (b,b) and t−i is 1-cheap, then let

ui (ti , t−i ) =
1

2

(b − a) β

1 + |I (t−i )|
.

Remark 4. In fact, MB,δ (Fδ ) is an IR-BIC mechanisms (not just BIR-BIC), as will be shown later.

3.3 Example 1 Revisited
As an illustration, let us apply mechanisms MD,δ and MB,δ to the distribution δ = (n,p,a,b) in

Example 1 where n = 2, p = 1/2, a = 1 and b ∈ [2, 3). Since both mechanisms are designed to be

fully symmetric with respect to the swapping of items 1 and 2, and to the swapping of buyers 1

and 2, we only need to specify enough details up to these symmetries. �is δ falls under Case 3 of

mechanism MD,δ and Case 2 of MB,δ , respectively.

ALGORITHM 3: MechanismMB,δ for Example 1

Case 1. If t2 = (1, 1), then buyer 1 is o�ered both items as a bundle at price 1 + b;

Case 2. If t2 = (1,b): ;

if t1 = (1,b), then each buyer is o�ered 50% of both items as a bundle at price
1

2
(1 + b);

if t1 = (b, 1), then each buyer gets his most-valued item at price b;

if t1 = (b,b), then buyer 1 gets both items as a bundle at price 2b − 1

4
(b − 1);

Case 3. If t1 = t2 = (b,b), then each buyer gets 50% of both items as a bundle at price b;

�estion: What is the di�erence between the allocations by MD,δ and MB,δ in Example 1, and

how does MB,δ manage to outperform MD,δ ?

Ans. �e two mechanisms di�er only in the way they handle the following two sets of pro�les:

(A) Assume t1 = t2 = (1,b) or t1 = t2 = (b, 1). Here MB,δ o�ers each buyer 50% of both items as a

bundle at price
1

2
(1 + b), while MD,δ o�ers each buyer 50% of item 2 at price

b
2

;

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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ALGORITHM 4: MechanismMD,δ for Example 1

If any buyer i submits the bid ti = (1, 1), then the other buyer is o�ered items 1 and 2 as a bundle at price 1+b;

otherwise, the items are sold separately at price b each (with a particular tie-breaking rule speci�ed by the

hierarchy allocation function (H1,H2) where H1 = [(b,b); (b,a)], H2 = [(b,b); (a,b)]);

(B) Assume i has type (b,b) and the other buyer has type (1,b) or (b, 1). Here MB,δ o�ers buyer i
both items as a bundle at price 2b − 1

4
(b − 1), while MD,δ o�ers buyer i both items as a bundle at

price 2b.

Mechanism MB,δ gets more payment than MD,δ in situation A and gets less in situation B, but

gains an overall improvement of
1

16
(3 − b) over MB,δ . It is key to observe that mechanism MB,δ

violates the DIC constraint u1((b,b), (1,b)) ≥ u1((1,b), (1,b)) + (b − 1)q1

1
((1,b), (1,b)).

3.4 Application to Continuous Distributions
�e results in the Main �eorem have implications on the maximum revenue for continuous

distributions if the la�er can be well approximated by Fδ . As an application, let λ > 1, a > 1

λ−1
,

and let F = (F ji | 1 ≤ i ≤ n, 1 ≤ j ≤ 2) be a distribution where F ji = F are IID distributions

with support(XF ) = [a,a + 1] ∪ [λa, λa + 1]; let p = Pr {XF ≤ a + 1}. We can regard Fδ , where

δ = (n,p, 1, λ), as a normalized discrete approximation of F .

Corollary 3.6. Let δ = (n,p, 1, λ). �ere exists a constant Cδ such that

|REVZ (F ) − rZ (δ ) · a | < Cδ for Z ∈ {D,B}.

Corollary 3.6 is proved by an extension of our proof of the Main �eorem to the continuous

se�ing (details omi�ed here).

Remark 5. �ere are general high-precision approximation theorems in the literature (e.g. see[6, 11,

20, 27]) connecting continuous and discrete distributions for the BIC maximum revenue auction.

Our derivation of Corollary 3.6 does not rely on such general theorems.

We consider an illustrative example of Corollary 3.6 where n = 2. Let Ga = (F ji | i, j ∈ {1, 2}),
where F ji = F are IID distributions with XF uniformly distributed over [a,a + 1] ∪ [2a, 2a + 1].
According to Corollary 3.6, we have

1

a
lim

a→∞
REVZ (Ga) = rZ (δ ) for Z ∈ {D,B} where δ = (2, 1

2
, 1, 2).

More precise bounds for this example are given below. Note that from De�nition 1, one has

rD (δ ) = 25

8
and rB (δ ) = 51

16
, with a 2% di�erence.

Corollary 3.7. For a ≥ 20, the BIC maximum revenue for Ga strictly exceeds its DIC maximum
revenue. In fact, we have for a ≥ 6,

25

8

a ≤ REVD (Ga) <
25

8

a +
5

4

51

16

a ≤ REVB (Ga) <
51

16

a +
3

2

.

4 DIC MAXIMUM REVENUE
In this section we give a proof outline of the Main �eorem for the dominant strategy implementa-

tion:

Theorem 4.1. Any IR-DIC mechanismsM must satisfyM(Fδ ) ≤ rD (δ ).
Theorem 4.2. MD,δ is IR-DIC, andMD,δ (Fδ ) = rD (δ ).
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We begin with a general discussion applicable to any mechanism. Let M be a mechanism with

allocation q ji and utility ui . We separate out the allocation of cheap items from non-cheap items.

�us, de�ne q′ji (t) = q ji (t)η j (t) where η j (t) = 1 if item j is cheap, and η j (t) = 0 if j is non-cheap.

Note that the welfare of the buyers from the allocation of cheap items is a ·∑i, j,t Pr {t}q′
j
i (t), while

the welfare from the non-cheap items is

∑
i, j,t Pr {t}(1 − η j (t))q

j
i (t)t

j
i which is at most 2(1 − pn)b

(the revenue obtained by selling-separately at price b). By de�nition of utility, it is clear that the

revenue M(Fδ ) equals the total welfare minus utility of the buyers. �is leads to the following

formula:

Basic Formula. For any mechanism M , we have

M(Fδ ) ≤ 2(1 − pn)b +Qa −U ,

where Q =
∑

i, j,t Pr {t}q′
j
i (t) and U =

∑
i,t Pr {t}ui (t).

De�nition 4.3. For any set S of pro�les, let Q(S) = ∑
t ∈S Pr {t}

∑
i, j q

′j
i (t) and

U (S) = ∑
t ∈S Pr {t}

∑
i ui (t).

To make use of the Basic Formula, we partition the pro�les that can possibly contribute to the

Q term into three subsets S0, S1, S2, and then use the IR-DIC Conditions to show that the U term

(utility obtained by buyers) is greater than a certain linear combination of Q(S0), Q(S1), Q(S2). �e

Basic Formula then yields rD (δ ) as an upper bound to M(Fδ ).

De�nition 4.4. Let S0 = {(a,a)n} be the set containing a single element, namely, the lowest

pro�le. Let S1 be the set of 1-cheap pro�les t satisfying |I (t)| = 1. Let S2 be the set of 1-cheap

pro�les t satisfying |I (t)| ≥ 2.

Fact 2. q′ji (t) = 0 for all t < S0 ∪ S1 ∪ S2.

Recall that p0 = p
2n

, p1 = 2np2n−1(1−p), p2 = 2pn(1−pn −npn−1(1−p)). �ey have the following

interpretation as can be easily veri�ed.

Fact 3. Pr {t ∈ S`} = p` for ` ∈ {0, 1, 2}, where t is distributed according to Fδ .

Lemma 4.5.

Q(S0) ≤ 2p0,Q(S1) ≤ p1,Q(S2) ≤ p2. (2)

Proof. Any pro�le in S1 or S2 has exactly one cheap item, and the (only) pro�le in S0 has two

cheap items. Lemma 4.5 then follows from Fact 3. �

Lemma 4.6.

M(Fδ ) ≤ 2b(1 − pn) + a
∑

0≤`≤2

Q(S`) −U . (3)

Proof. It follows from Fact 2 that Q = Q(S0) +Q(S1) +Q(S2). Lemma 4.6 then follows from the

Basic Formula. �

Lemmas 4.5 and 4.6 set the stage. We are ready to invoke the incentive compatibility requirements

to prove �eorem 4.1. �is se�ing is also useful in the next section when we prove the BIC part of

the Main �eorem.
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4.1 Upper Bound to DIC Revenue
We prove �eorem 4.1 in this subsection. �e key is to prove the following proposition.

Proposition 1. Any IR-DIC mechanism M must satisfy the following inequality:

U ≥ (b − a)
( 1 − p2

2p2
Q(S0) +

1 − p
2p

Q(S1) +
1 − p
p

Q(S2)
)
. (4)

We �rst show that �eorem 4.1 follows from Proposition 1. It follows from Lemma 4.6 and

Proposition 1 that, for any IR-DIC mechanism M , we have

M(Fδ ) ≤ 2(1 − pn)b +Q(S0)
[
a − 1 − p2

2p2
(b − a)

]
+

+Q(S1)
[
a − 1 − p

2p
(b − a)

]
+

+Q(S2)
[
a − 1 − p

p
(b − a)

]
+
.

With no negative terms, the above expression together with Lemma 4.5 immediately yield �eorem

4.1. �us to establish �eorem 4.1, it su�ces to prove Proposition 1.

De�nition 4.7. For any 1 ≤ i, i ′ ≤ n,

let τi,i′ be the pro�le t such that t1

i = t2

i′ = b and all other t j
`
= a;

let τi,0 be the pro�le t with t1

i = b and all other t j
`
= a;

let τ0,i′ be the pro�le t with t2

i′ = b and all other t j
`
= a;

let τ0,0 = (a,a)n .

Fact 4. S0 = {τ0,0}, S1 = {τi,0, τ0,i | 1 ≤ i ≤ n}.

De�nition 4.8. For any t ∈ S2 and 1 ≤ i ≤ n, de�ne τt,i as follows: let item j (j ∈ {1, 2}) be the

cheap item for t ; de�ne τt,i = t ′ where t ′ji = b and t ′j
′

i′ = t j
′

i′ for all other (i ′, j ′) , (i, j).

De�nition 4.9. Let S ′
1
= {τi,i′ | 1 ≤ i, i ′ ≤ n}. Let S ′

2
= {τt,i | t ∈ S2, 1 ≤ i ≤ n}.

Fact 5. S ′
1
, S ′

2
are disjoint sets of pro�les containing no cheap items.

From Fact 5 and the IR Conditions, we have

U ≥ U (S1) +U (S ′1) +U (S ′2). (5)

We now utilize the DIC-conditions to establish the following lemma relating the U and Q values

on di�erent types.

Lemma 4.10.

U (S1) ≥
1 − p
p
((b − a)Q(S0) + 2U (S0)), (6)

U (S ′
1
) ≥ 1 − p

2p
((b − a)Q(S1) +U (S1)), (7)

U (S ′
2
) ≥ 1 − p

p
((b − a)Q(S2) +U (S2)). (8)

Proof. �e DIC-conditions require that, for all ti , t
′
i , t−i ,

ui (ti , t−i ) ≥ ui (t ′i , t−i ) +
∑
j

(t ji − t
′j
i )q

j
i (t
′
i , t−i ).
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We only need a subset of these conditions where ti > t ′i . In such cases, we can use q′ji instead of q ji
and write

DIC-Conditions: For all ti > t ′i and any t−i ,

ui (ti , t−i ) ≥ ui (t ′i , t−i ) +
∑
j

(t ji − t
′j
i )q
′j
i (t
′
i , t−i ). (9)

To prove Eq. 6, consider ti ∈ {(b,a), (a,b)}, t ′i = (a,a). We have

ui (τi,0) = ui ((b,a), (a,a)n−1) ≥ ui (τ0,0) + (b − a)q′1i (τ0,0),
and ui (τ0,i ) ≥ ui (τ0,0) + (b − a)q′2i (τ0,0). (10)

By Fact 4 we have

U (S1) =
∑
t ∈S1

Pr {t}
∑
i′

ui′(t)

= p2n−1(1 − p)
∑
i

(∑
i′

ui′(τi,0) +
∑
i′

ui′(τ0,i )
)
.

Using Eq. 10 and the IR Conditions ui′(t) ≥ 0, we obtain

U (S1) ≥ p2n−1(1 − p)
(∑

i

ui (τi,0) +
∑
i

ui (τ0,i )
)

≥ p2n−1(1 − p)
∑
i

(
2ui (τ0,0) + (b − a)q

′
1

i (τ0,0) + (b − a)q
′
2

i (τ0,0)
)

=
1 − p
p

Pr {τ0,0}
(
2

∑
i

ui (τ0,0) + (b − a)
∑
j

∑
i

q′ji (τ0,0)
)

=
1 − p
p
(2U (S0) + (b − a)Q(S0)).

�is proves Eq. 6, the �rst inequality in the Lemma.

We now prove Eq. 7. Write S1 = SL
1
∪ SR

1
where SL

1
= {τ0,i | 1 ≤ i ≤ n} and SR

1
= {τi,0 | 1 ≤ i ≤ n}.

It su�ces to prove for x ∈ {L,R},

U (S ′
1
) ≥ 1 − p

p
((b − a)Q(Sx

1
) +U (Sx

1
)). (11)

We prove Eq. 11 for x = L; the case for x = R is similar.

(b − a)Q(SL
1
) +U (SL

1
) =

∑
t ∈SL

1

Pr {t}
(
(b − a)

∑
j

∑
i

q′ji (t) +
∑
i

ui (t)
)

=
∑
t ∈SL

1

p2n−1(1 − p)
∑
i

(
(b − a)q′1i (t) + ui (t)

)
= p2n−1(1 − p)

∑
i′

∑
i

(
(b − a)q′1i (τ0,i′) + ui (τ0,i′)

)
. (12)

Now consider the DIC-Conditions (Eq. 9) for (ti , t−i ) = τi,i′ and (t ′i , t−i ) = τ0,i′ , which gives

ui (τi,i′) ≥ ui (τ0,i′) + (b − a)q
′
1

i (τ0,i′). (13)
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From Eqs. 12 and 13, we obtain

(b − a)Q(SL
1
) +U (SL

1
) ≤ p2n−1(1 − p)

∑
i

∑
i′

ui (τi,i′)

≤ p

1 − p
∑
i

∑
i′

Pr {τi,i′}
∑
i′′

ui′′(τi,i′)

=
p

1 − p
∑
t ∈S ′

1

Pr {t}
∑
i

ui (t)

=
p

1 − pU (S
′
1
).

�is proves Eq. 11, thus completing the proof of Eq. 7.

We now prove Eq. 8, the third inequality of Lemma 4.10. By de�nition

(b − a)Q(S2) +U (S2) =
∑
t ∈S2

Pr {t}((b − a)
∑
i, j

q′ji (t) +
∑
i

ui (t)). (14)

Now observe that the DIC-Condition Eq. 9 for τt,i ∈ S ′2 and t ∈ S2 implies
2

ui (τt,i ) ≥ ui (t) + (b − a)
∑
j

q′ji (t) (15)

From Eq. 14 and 15, we obtain

(b − a)Q(S2) +U (S2) ≤
∑
t ∈S2

Pr {t}
∑
i

ui (τt,i )

=
p

1 − p
∑
t ∈S2

∑
i

Pr {τt,i }ui (τt,i )

≤ p

1 − p
∑
t ∈S ′

2

Pr {t}
∑
i′′

ui (t)

=
p

1 − pU (S
′
2
).

�is proves Eq. 8. We have completed the proof of the Lemma 4.10. �

Proposition 1 can be straightforwardly derived from Lemma 4.10, Eq. 5, and the IR conditions

U (S0),U (S2) ≥ 0. �is completes the proof of Proposition 1 and hence �eorem 4.1.

4.2 Realizing DIC Revenue
We turn to the proof of �eorem 4.2. We need to prove two statements.

Statement 1. MD,δ is IR and DIC;

Statement 2. MD,δ (Fδ ) = rD (δ ).
�e proof of Statement 1 is straightforward by case analysis, and is omi�ed here (see the Appendix

of arXiv: 1607.03685). For the rest of this subsection, we prove Statement 2. Here is the top level

view of the proof. To show that the upper bound on revenue from �eorem 4.1 can be achieved, we

demonstrate that several critical inequalities involved in the upper bound proof can be replaced

by equalities. First, for mechanism MD,δ , it can be veri�ed that Eqs. 3, 4 now are equalities, while

2
If j is the cheap item in t , then ui (τt,i ) ≥ ui (t )+ (b −a)q′ji (t ). However, q′ji (t ) =

∑
j′ q′

j′
i (t ) in this case, since q′j

′
i (t ) = 0

for j′ , j .
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Eq. 2 is replaced by Q(S0) = 2αp0,Q(S1) = βp1,Q(S2) = γp2. Combining these equalities gives us

MD,δ (Fδ ) = rD (δ ). We now give the details.

Fact 6. ui (t) = 0 for all t < S1 ∪ S ′1 ∪ S ′2 and all i . �us, U = U (S1) +U (S ′1) +U (S ′2).
Proof. From Eq. 1, we know thatui (t) , 0 may occur only when t = (ti , t−i ) and one of the following

is valid: (a) t−i = (a,a)n−1
and ti , (a,a); (b) t−i is 1-cheap and ti = (b,b). In case (a) we have

t ∈ S1 ∪ S ′1, and in case (b) we have t ∈ S ′
2
. �

Fact 7. ∑
i, j

q′ji (t) =


2α if t ∈ S0

β if t ∈ S1

γ if t ∈ S2

(16)

Proof. For the (only) pro�le t in S0, the allocation function of MD,δ speci�es

∑
i, j q

′j
i (t) = 2 if b < v1,

and 0 otherwise. Similarly, for any pro�le t ∈ S1,

∑
i, j q

′j
i (t) = 1 if b < v3, and 0 otherwise; and for

any pro�le t ∈ S2,

∑
i, j q

′j
i (t) = 1 if b < v2, and 0 otherwise. �is is exactly the assertion of Fact

7. �

Lemma 4.11.

Q(S0) = 2p0α ,Q(S1) = p1β,Q(S2) = p2γ . (17)

Proof. Follows immediately from Fact 3 and 7. �

Lemma 4.12.

MD,δ (Fδ ) = 2(1 − pn)b + a
∑

0≤`≤2

Q(S`) − (U (S1) +U (S ′1) +U (S ′2)).

Proof. As under MD,δ all the non-cheap items are allocated in full, the Basic Formula achieves

equality, i.e. MD,δ (Fδ ) = 2(1−pn)b +Qa −U . Also from Fact 2 we have Q = Q(S0)+Q(S1)+Q(S2),
and from Fact 6 we have U = U (S1) +U (S ′1) +U (S ′2). Lemma 4.12 follows. �

Lemma 4.13.

U (S1) = (b − a)
1 − p
p

Q(S0), (18)

U (S ′
1
) = (b − a)1

2

((1 − p
p
)2Q(S0) + (

1 − p
p
)Q(S1)), (19)

U (S ′
2
) = (b − a)1 − p

p
Q(S2). (20)

Proof. Eq. 18 can easily be derived from Eq. 1, Lemma 4.11, and Fact 3. We omit the proof here.

To prove Eq. 19, note that for any τi,i′ ∈ S ′1, Eq. 1 implies

∑
i′′ ui′′(τi,i′) = (αn + β)(b − a) if i = i ′,

and 0 otherwise. �us we have

U (S ′
1
) =

∑
t ∈S ′

1

Pr {t}
∑
i′′

ui′′(t)

=
∑
i,i′

Pr {τi,i′}
∑
i′′

ui′′(τi,i′)

=
∑
i

Pr {τi,i }(
α

n
+ β)(b − a)

= p2n−2(1 − p)2(α + nβ)(b − a).
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Making use of Lemma 4.11 and Fact 3, we obtain Eq. 19.

To prove Eq. 20, note that for any t ∈ S2, 1 ≤ i, i ′ ≤ n we have from Eq. 1

ui′(τt,i ) =
{

γ
|I (t ) | (b − a) if i ′ = i ∈ I (t)
0 otherwise.

(21)

It follows that

U (S ′
2
) =

∑
t ′∈S ′

2

Pr {t ′}
∑
i′

ui′(t ′)

=
∑
t ∈S2

∑
i

1 − p
p

Pr {t}
∑
i′

ui′(τt,i )

=
1 − p
p

∑
t ∈S2

Pr {t}
∑
i ∈I (t )

γ

|I (t)| (b − a)

=
1 − p
p

γ (b − a)
∑
t ∈S2

Pr {t}

= (b − a)1 − p
p

Q(S2), (22)

where we used Lemma 4.11 and Fact 3 in the last step. �is proves Eq. 20. We have �nished the

proof of Lemma 4.13. �

Using Lemmas 4.11-4.13 and simplifying the above equation, we obtain

MD,δ (Fδ ) = rD (δ ).

�is proves Statement 2, and completes the proof of �eorem 4.2.

5 BIC MAXIMUM REVENUE
In this section we give a proof of the Main �eorem for the Bayesian implementation:

Theorem 5.1. Any BIR-BIC mechanismsM must satisfyM(Fδ ) ≤ rB (δ ).

Theorem 5.2. MB,δ is IR-BIC, andMB,δ (Fδ ) = rB (δ ).

�e proofs of �eorem 5.1 and 5.2 follow the same top-level outline as the proofs of �eorem 4.1

and 4.2. Lemma 4.5 and 4.6 proved in Section 4 are valid for any mechanism M , and will also be the

starting point for the BIC proof.

5.1 Upper Bound to BIC Revenue
We prove �eorem 5.1 in this subsection. �e key is to prove the following proposition.

Proposition 2. Any BIR-BIC mechanism M must satisfy the following inequality:

U ≥ (b − a)
( 1 − p2

2p2
Q(S0) +

1 − p
2p
(Q(S1) +Q(S2))

)
.

�eorem 5.1 can be derived from Lemma 4.5, 4.6 and Proposition 2 in exactly the same way as

�eorem 4.1’s derivation from Lemma 4.5, 4.6 and Proposition 1, and will not be repeated here. It

remains to prove Proposition 2.

We use a subset of the BIR-BIC Conditions in our proof; these conditions are listed below for

easy reference.
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(a) BIR Condition: For each i ,

ūi (ti ) ≥ 0 where ti = (a,a). (23)

(b) BIC Condition: For each i ,

ūi (b,a) ≥ ūi (a,a) + (b − a)q̄′1i (a,a). (24)

ūi (a,b) ≥ ūi (a,a) + (b − a)q̄′2i (a,a). (25)

ūi (b,b) ≥ ūi (a,b) + (b − a)q̄′1i (a,b). (26)

ūi (b,b) ≥ ūi (b,a) + (b − a)q̄′2i (b,a). (27)

�e plan is to use Eqs. 23-27 to obtain a lower bound on U in terms of Q(S0), Q(S1) and Q(S2).

Lemma 5.3. For each i ,

ūi (b,a) + ūi (a,b) ≥ (b − a)
∑
j

q̄′ji (a,a).

Proof. Immediate from Eqs. 23-25. �

Lemma 5.4. For each i ,

ūi (b,b) ≥
1

2

(b − a)
∑
j

q̄′ji (a,a)

+
1

2

(b − a)
∑
j

(
q̄′ji (a,b) + q̄′

j
i (b,a)

)
.

Proof. Adding up Eqs. 26 and 27, we obtain

ūi (b,b) ≥
1

2

(
ūi (b,a) + ūi (b,a)

)
+

1

2

(b − a)
∑
j

(
q̄′ji (a,b) + q̄′

j
i (b,a)

)
, (28)

where we have used the fact that q′2i ((a,b), t−i ) = q′1i ((b,a), t−i ) = 0 for all t−i . Lemma 5.4 now

follows by using Lemma 5.3 on Eq. 28. �

We now express U as a convex combination of the le�-hand sides of Eq 23, Lemmas 5.3 and 5.4,

and obtain a lower bound in terms of Q(S`):

U =
∑
i

∑
t

Pr {t}ui (t)

= p2

∑
i

ūi (a,a)

+ p(1 − p)
∑
i

(
ūi (b,a) + ūi (a,b)

)
+ (1 − p)2

∑
i

ūi (b,b)

≥ C1 +C2, (29)
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where

C1 = (b − a)
(
p(1 − p) + 1

2

(1 − p)2
) [∑

i

∑
t−i

Pr {t−i }
∑
j

q′ji ((a,a), t−i )
]

= (b − a)1 − p
2

2

∑
i

∑
t−i

Pr {t−i }
∑
j

q′ji ((a,a), t−i ), (30)

and C2 =
1

2

(b − a)(1 − p)2
∑
i

∑
t−i

Pr {t−i }
∑
j

(
q′ji ((a,b), t−i ) + q

′j
i ((b,a), t−i )

)
. (31)

Separating out the t−i = (a,a)n−1
term in Eq. 30, we obtain

C1 = (b − a)
1 − p2

2

[∑
i

p2n−2

∑
j

q′ji (τ00)

+
∑
i

∑
t−i,(a,a)n−1

Pr {t−i }
∑
j

q′ji ((a,a), t−i )
]

≥ (b − a)1 − p
2

2p2
Pr {τ00}

∑
i, j

q′ji (τ00)

+ (b − a)1 − p
2p

∑
t,i,ti=(a,a)
t−i,(a,a)n−1

Pr {t}
∑
j

q′ji (t),

C2 = (b − a)
1 − p

2p

∑
t, i

ti ∈{(a,b),(b,a)}

Pr {t}
∑
j

q′ji (t).

It follows that

C1 +C2 ≥ (b − a)
1 − p2

2p2
Q(S0)

+ (b − a)1 − p
2p

∑
t,τ00

∑
i,ti,(b,b)

Pr {t}
∑
j

q′ji (t).

Now, noting that

∑
j q
′j
i (t) = 0 if ti = (b,b), we have∑

t,τ00

∑
i,ti,(b,b)

Pr {t}
∑
j

q′ji (t) =
∑
t,τ00

Pr {t}
∑
i

∑
j

q′ji (t)

=
∑

t ∈S1∪S2

Pr {t}
∑
i

∑
j

q′ji (t)

= Q(S1) +Q(S2) (32)

where we have used Fact 2.

It follows from Eqs. 30-32 that

U ≥ (b − a)1 − p
2

2p2
Q(S0) + (b − a)

1 − p
2p
(Q(S1) +Q(S2)).

�is proves Proposition 2, and completes the proof of �eorem 5.1.
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5.2 Realizing BIC Revenue
To prove �eorem 5.2, it su�ces to prove the following two statements.

Statement 3. MB,δ is IR and BIC.

Statement 4. MB,δ (Fδ ) = rB (δ ).
�e proof of Statement 3 is straightforward, and is omi�ed here (see the Appendix of arXiv:

1607.03685). �e rest of this subsection is devoted to the proof of Statement 4. �e statement

is clearly true if b ≥ v3 (i.e. Case 3 in the de�nition of MB,δ ), since in this case by de�nition

rB (δ ) = rD (δ ), MB (Fδ ) = MD (Fδ ), and �eorem 4.2 has established MD (Fδ ) = rD (δ ). �us we can

assume b ∈ (a,v3) (i.e. Case 1 or 2). Note that in this situation β = 1 and α ∈ {0, 1}.
�e proof follows essentially the same outline as the proof of Statement 2 in Section 4.2. Fact 2,

3, 6 remain true; Fact 7, Lemmas 4.11, 4.12 are modi�ed to the following.

Fact 8. ∑
i, j

q′ji (t) =
{

2α if t ∈ S0

β if t ∈ S1 ∪ S2.

Lemma 5.5. Q(S0) = 2p0α ,Q(S1) = p1β , and Q(S2) = p2β .

Lemma 5.6. MB,δ (Fδ ) = 2b(1 − pn) + a∑
0≤`≤2

Q(S`) − (U (S1) +U (S ′1) +U (S ′2)).
�e two lemmas above are straightforward to prove. Finally, Lemma 4.13 is modi�ed to the

following:

Lemma 5.7.

U (S1) = (b − a)
1 − p
p

Q(S0), (33)

U (S ′
1
) = (b − a)1

2

((1 − p
p
)2Q(S0) + (

1 − p
p
)Q(S1)), (34)

U (S ′
2
) = (b − a)1 − p

2p
Q(S2). (35)

�e proof of Eqs. 33-34 is exactly the same as in the proof of Eqs. 18-19 in Lemma 4.13. �e

proof of Eq. 35 is also similar to the proof of Eq. 20 in Lemma 4.13. We omit the details here. Use

Lemmas 5.5-5.7 and simplify, we obtain

MB,δ (Fδ ) = rB (δ ).
�is proves Statement 4, and completes the proof of �eorem 5.2.
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