# Dominant-Strategy versus Bayesian Multi-item Auctions: Maximum Revenue Determination and Comparison 

ANDREW CHI-CHIH YAO, Tsinghua University


#### Abstract

We address two related unanswered questions in maximum revenue multi-item auctions. Is dominantstrategy implementation equivalent to the semantically less stringent Bayesian one (as in the case of Myerson's 1-item auction)? Can one find explicit solutions for non-trivial families of multi-item auctions (as in the 1-item case)? In this paper, we present such natural families whose explicit solutions exhibit a revenue gap between the two implementations. More precisely, consider the $k$-item $n$-buyer maximum revenue auction where $k, n>1$ with additive valuation in the independent setting (i.e., the buyers $i$ have independent private distributions $F_{i j}$ on items $j$ ). We derive exact formulas for the maximum revenue when $k=2$ and $F_{i j}$ are any IID distributions on support of size 2, for both the dominant-strategy (DIC) and the Bayesian (BIC) implementations. The formulas lead to the simple characterization that, the two models have identical maximum revenue if and only if selling-separately is optimal for the distribution. Our results also give the first demonstration, in this setting, of revenue gaps between the two models. For instance, if $k=n=2$ and $\operatorname{Pr}\left\{X_{F}=1\right\}=\operatorname{Pr}\left\{X_{F}=2\right\}=\frac{1}{2}$, then the maximum revenue in the Bayesian implementation exceeds that in the dominant-strategy by exactly $2 \%$; the same gap exists for the continuous uniform distribution $X_{F}$ over $[a, a+1] \cup[2 a, 2 a+1]$ for all large $a$.


Additional Key Words and Phrases: maximum revenue; multi-item auction; dominant strategy; Bayesian implementation

## 1 INTRODUCTION

We consider the $k$-item $n$-buyer maximum revenue auction with additive ${ }^{1}$ valuation in the independent setting (i.e., the buyers $i$ have independent private distributions $F_{i}^{j}$ over the range $[0, \infty$ ) on items $j$ ). How should the optimal mechanisms be designed?

Myersons's classical paper [24] elegantly solved the problem for the single item case. For multiple items ( $k>1$ ), the problem is much more complex with an extensive literature (see Related Work below). Much progress has been made, but many interesting questions remain open. In this paper we focus on two such questions that arise naturally.

Firstly, there are two standard models of mechanism design for auctions, known respectively as dominant-strategy incentive-compatible (DIC) and Bayesian incentive-compatible (BIC) mechanisms. Formally, the BIC constraints look much weaker than the DIC constraints. It is thus a remarkable feature of Myersons's theory that exactly the same maximum revenue is achieved by the BIC mechanisms and the DIC mechanisms for single-item auctions. Can this equivalence hold for $k>1$ ?

Q1. For $k>1$, can Bayesian incentive-compatible (BIC) mechanisms ever produce strictly more revenue than the dominant-strategy incentive-compatible (DIC) mechanisms?

[^0](A substantial literature exists on the above DIC versus BIC question: see Related Work below). For our second question, note that Myerson's characterization of optimal mechanisms for $k=1$ leads to explicit formulas for the maximum revenue. For $k>1$, in the single buyer ( $n=1$ ) case, there is a rich collection of sophisticated results (e.g., [14-19, 23, 25, 28]), where explicit expressions for optimal revenue are obtained for certain discrete and continuous distributions. However, for $k>1$ and $n>1$, there do not seem to be any interesting results of this kind in the literature. Thus we pose the following question:

Q2. For $k>1$ and $n>1$, can we obtain explicit expressions of the optimal revenue for interesting families of distributions?

In this paper we address questions Q1 and Q2. In the direction of Q2, we derive exact formulas for the maximum revenue for both DIC and BIC implementations for $k=2$ and any $n>1$, where the 2 n distributions $F_{i}^{j}$ are IID with a common $F$ of support size 2 . As a by-product, these formulas give an answer to Q1, showing the BIC optimal revenue expression to be strictly greater than that of DIC for a broad range of parameters. In fact the formulas lead to the simple characterization that, the two implementations have identical maximum revenue if and only if selling-separately is optimal for the distribution. For instance, if $k=n=2$ and $\operatorname{Pr}\left\{X_{F}=1\right\}=\operatorname{Pr}\left\{X_{F}=2\right\}=\frac{1}{2}$, then the maximum revenue in the Bayesian implementation exceeds that in the dominant-strategy by exactly $2 \%$. A natural extension to the continuous case shows that the same $2 \%$ gap holds for the uniform distribution over $[a, a+1] \cup[2 a, 2 a+1]$ as $a \rightarrow \infty$. We also remark that our result complements a theorem in [30] that the BIC maximum revenue is always upper bounded by a constant factor of the DIC maximum revenue.
Beyond providing an answer to Q1 and Q2, our techniques may have several other contributions. Firstly, it is demonstrated in a natural context how to turn a DIC mechanism into a BIC mechanism with increased revenue (see a specific example in Section 3.3). Secondly, our proposed optimal mechanisms, while applicable to arbitrary $n$ buyers, have simple descriptions. Each mechanism employs only a pure hierarchical allocation rule. Such simple designs may lend these mechanisms to other applications. Finally, the problem of finding explicit exact solutions to multi-item auctions is an interesting open area. Economic concepts and interpretations often value precision over constant approximations. A collection of exactly solvable auction problems could be valuable for other econometrics explorations.
The main results of this paper will be stated in Section 3 with proofs given in Sections 4 and 5 . Formal descriptions of our mechanisms and formulas will be illustrated through concrete examples (see Example 1 in Section 3.1 and 3.3) to help the understanding.

## Related Work

Regarding Q1, when the independence condition on the distributions $F_{i}^{j}$ is dropped, then the answer is known. [9] showed BIC can generate unbounded more revenue than DIC, when $F_{i}^{j}$ are correlated across buyers even for $k=1$. Recently, [29] showed in some instance with $k>1$, BIC can generate strictly more revenue than DIC, when $F_{i}^{j}$ are correlated across items. There are other examples (e.g. [13, 23]) where DIC and BIC are shown to be inequivalent in revenue (and other attributes), but their models are farther away from our model under consideration here.

We note that much progress has been made on the computational aspects of multi-item auctions. The intrinsic complexity of computing the optimal revenue has been investigated (e.g. [8, 10]; efficient algorithms have been found in a variety of circumstances (e.g. [4, 5, 11]); furthermore, simple approximation mechanisms have been extensively studied in various environments (e.g. [1, 6, 7, 12, 18, 21, 22, 26, 27, 30]).

## 2 PRELIMINARIES

### 2.1 Basic Concepts

Let $\mathcal{F}$ be a multi-dimensional distribution on $[0, \infty)^{n k}$. Consider the $k$-item $n$-buyer auction problem where the valuation $n \times k$ matrix $t=\left(t_{i}^{j}\right)$ is drawn from $\mathcal{F}$. Each buyer $i$ has $t_{i} \equiv\left(t_{i}^{1}, t_{i}^{2}, \cdots, t_{i}^{k}\right)$ as his valuations of the $k$ items. We also refer to $t_{i}$ as buyer $i$ 's type, and $t$ as the type profile of the buyers (or profile for short). For convenience, let $t_{-i}$ denote the valuations of all buyers except buyer $i$; that is, $t_{-i}=\left(t_{i^{\prime}} \mid i^{\prime} \neq i\right)$. Note that $t^{j}$, the $j$-th column of the matrix $t$, contains the valuations of all the buyers on item $j$.

A mechanism $M$ specifies an allocation $q(t)=\left(q_{i}^{j}(t)\right) \in[0, \infty)^{n k}$, where $q_{i}^{j}(t)$ denotes the probability that item $j$ is allocated to buyer $i$ when $t=\left(t_{i}^{j}\right)$ is reported as the type profile to $M$ by the buyers. We require that $\sum_{i=1}^{n} q_{i}^{j}(t) \leq 1$ for all $j$, so that the total probability of allocating item $j$ is at most 1 . $M$ also specifies a payment $s_{i}(t) \in(-\infty, \infty)$ for buyer $i$.

The utility $u_{i}(t)$ for buyer $i$ is defined to be $t_{i} \cdot q_{i}(t)-s_{i}(t)$, where $t_{i} \cdot q_{i}(t)$ stands for the inner product $\sum_{j=1}^{k} t_{i}^{j} q_{i}^{j}(t)$. Let $u_{i}\left(t_{i} \leftarrow t_{i}^{\prime}, t_{-i}\right)=t_{i} \cdot q_{i}\left(t_{i}^{\prime}, t_{-i}\right)-s_{i}\left(t_{i}^{\prime}, t_{-i}\right)$, i.e. the utility buyer $i$ would obtain if he has type $t_{i}$ but reports to the seller as $t_{i}^{\prime}$. The expected allocation $\bar{q}_{i}\left(t_{i}\right)$ for buyer $i$ is defined to be $E_{t_{-i}}\left(q\left(t_{i}, t_{-i}\right)\right)$. The expected utility $\bar{u}_{i}\left(t_{i}\right)$ for buyer $i$ is defined to be $E_{t_{-i}}\left(u\left(t_{i}, t_{-i}\right)\right)$. Also let $\bar{u}_{i}\left(t_{i} \leftarrow t_{i}^{\prime}\right)=E_{t_{-i}}\left(\bar{u}_{i}\left(t_{i} \leftarrow t_{i}^{\prime}, t_{-i}\right)\right)$.

The following formulas are well known:
Transfer Equations: $u_{i}\left(t_{i} \leftarrow t_{i}^{\prime}, t_{-i}\right)=u_{i}\left(t_{i}^{\prime}, t_{-i}\right)+\left(t_{i}-t_{i}^{\prime}\right) \cdot q_{i}\left(t_{i}^{\prime}, t_{-i}\right)$ for all $t_{i}, t_{i}^{\prime}, t_{-i}$.
Averaged Form: $\bar{u}_{i}\left(t_{i} \leftarrow t_{i}^{\prime}\right)=\bar{u}_{i}\left(t_{i}^{\prime}\right)+\left(t_{i}-t_{i}^{\prime}\right) \cdot \bar{q}_{i}\left(t_{i}^{\prime}\right)$ for all $t_{i}, t_{i}^{\prime}$.
Two kinds of mechanisms have been widely studied, referred to as Dominant-strategy and Bayesian implementations as specified below.

Dominant-strategy: $I R$ conditions: $u_{i}(t) \geq 0$ for all $i$ and $t$.
DIC conditions: $u_{i}\left(t_{i}, t_{-i}\right) \geq u_{i}\left(t_{i} \leftarrow t_{i}^{\prime}, t_{-i}\right)$ for all $t_{i}, t_{i}^{\prime}$ and $t_{-i}$, or equivalently,
DIC conditions (alternate): $u_{i}\left(t_{i}, t_{-i}\right)-u_{i}\left(t_{i}^{\prime}, t_{-i}\right) \geq\left(t_{i}-t_{i}^{\prime}\right) \cdot q_{i}\left(t_{i}^{\prime}, t_{-i}\right)$ for all $t_{i}, t_{i}^{\prime}$ and $t_{-i}$. A mechanism is called individually rational (IR)/dominant-strategy incentive compatible ( $D I C$ ), if it satisfies the IR conditions/the DIC conditions, respectively.
Bayesian: BIR conditions: $\bar{u}_{i}\left(t_{i}\right) \geq 0$ for all $i$ and $t_{i}$.
BIC conditions: $\bar{u}_{i}\left(t_{i}\right) \geq \bar{u}_{i}\left(t_{i} \leftarrow t_{i}^{\prime}\right)$ for all $t_{i}, t_{i}^{\prime}$, or equivalently,
BIC conditions (alternate): $\bar{u}_{i}\left(t_{i}\right)-\bar{u}_{i}\left(t_{i}^{\prime}\right) \geq\left(t_{i}-t_{i}^{\prime}\right) \cdot \bar{q}_{i}\left(t_{i}^{\prime}\right)$ for all $t_{i}, t_{i}^{\prime}$.
A mechanism is called Bayesian individually rational (BIR)/Bayesian incentive compatible (BIC), if it satisfies the BIR conditions/the BIC conditions, respectively.
Let $s(x)=\sum_{i=1}^{n} s_{i}(x)$ be the total payments received by the seller. For any mechanism $M$ on $\mathcal{F}$, let $M(\mathcal{F})=E_{x \sim \mathcal{F}}(s(x))$ be the (expected) revenue received by the seller from all buyers. The optimal revenue is defined as $R E V_{D}(\mathcal{F})=\sup _{M} M(\mathcal{F})$ when $M$ ranges over all the IR-DIC mechanisms. Similarly, in the Bayesian model, the optimal revenue is defined as $R E V_{B}(\mathcal{F})=\sup _{M} M(\mathcal{F})$ where $M$ ranges over all the BIR-BIC mechanisms. As a benchmark for comparison, let $\operatorname{SREV}(\mathcal{F})$ stand for the revenue yielded when each item is sold separately by using the optimal mechanism of [24].

### 2.2 Hierarchy Allocation

The optimal BIC and DIC mechanisms proposed in this paper for $n$-buyer 2-item auctions will be described using the formalism of hierarchy allocations. The concept of hierarchy allocation was first raised in [2,3] for one item, and later for multi-items in [4]. Here we only need the concept as a convenient language to succinctly present our mechanisms.

Consider an $n$-buyer 1-item auction. A hierarchy allocation scheme $H$ is specified by a mapping Rank : $T \rightarrow \mathcal{R} \cup\{\infty\}$. Given a type $t \in\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, scheme $H$ allocates the item uniformly among the set of buyers $i$ with the smallest ranking. If $\operatorname{Rank}\left(t_{i}\right)=\infty$ for all $i$, then no allocation will be made to any buyer. For convenience, we use the notation $H=\left[\tau_{11}, \ldots, \tau_{1 a_{1}} ; \tau_{21}, \ldots, \tau_{2 a_{2}} ; \ldots ; \tau_{\ell 1}, \ldots, \tau_{\ell a_{\ell}}\right]$ with the understanding $\operatorname{Rank}\left(\tau_{d m}\right)=d$ for all $1 \leq d \leq \ell, 1 \leq m \leq a_{d}$, and $\operatorname{Rank}(t)=\infty$ for any type $t$ not listed among $\tau_{d m}$.

In an $n$-buyer $k$-item auction, a hierarchy mechanism $M$ uses a hierarchy allocation function specified by a $k$-tuple $\mathcal{H}=\left(H^{1}, H^{2}, \cdots, H^{k}\right)$, where each $H^{j}$ is a hierarchy allocation scheme to be used for item $j$; also a utility function $u_{i}(t)$ for each buyer $i$ needs to be specified for $M$. Note that the payment for buyer $i$ is determined by $s_{i}(t)=\sum_{j} q_{i}^{j}(t) t_{i}^{j}-u_{i}(t)$.

## 3 MAIN RESULTS

In this paper, we solve for $R E V_{D}(\mathcal{F})$ and $R E V_{B}(\mathcal{F})$ in the $n$-buyer, 2 -item case when $\mathcal{F}$ consists of 2n IID's of a common $F$ with support size 2 . Any such $\mathcal{F}$ can be specified by a 4 -tuple $\delta=(n, p, a, b)$ where $n \geq 2$ is an integer, $0<p<1$, and $0 \leq a<b$. Let $\mathcal{F}_{\delta}$ denote the valuation distribution for the $n$-buyer 2-item auction, where the distributions $F_{i}^{j}$ for buyer $i$ and item $j$ are independent and identical (IID) copies of random variables $X$ defined by $\operatorname{Pr}\{X=a\}=p$ and $\operatorname{Pr}\{X=b\}=1-p$. Assuming additive valuation on items for each buyer, we are interested in determining $R E V_{D}\left(\mathcal{F}_{\delta}\right)$ and $R E V_{B}\left(\mathcal{F}_{\delta}\right)$, the maximum revenue achievable under IR-DIC and BIR-BIC, respectively, for distribution $\mathcal{F}_{\delta}$. We find two benchmarks relevant, $\operatorname{SREV}\left(\mathcal{F}_{\delta}\right)$ and $s_{b}=2\left(1-p^{n}\right) b$ : the former is the revenue obtained by selling separately each item using Myerson's optimal mechanism; the latter is the revenue by selling separately each item at price $b$.
Fact 1. $\operatorname{SREV}\left(\mathcal{F}_{\delta}\right)=2 \cdot \max \left\{\left(1-p^{n}\right) b, p^{n-1} a+\left(1-p^{n-1}\right) b\right\}$.
It suffices to show that, for 1 -item auction with $n$ buyers and IID distributions $\mathcal{F}_{\delta}$, the maximum revenue possible is equal to $\max \left\{\left(1-p^{n}\right) b, p^{n-1} a+\left(1-p^{n-1}\right) b\right\}$. According to Myerson's optimal auction theory, the revenue maximization problem in this setting reduces to the welfare maximization problem where the valuation is replaced by a modified valuation (dependent on the distribution), called the ironed virtual valuation $\phi$. It is easy to show that for the distribution $\mathcal{F}_{\delta}, \phi(a)=(a-(1-p) b) / p$ and $\phi(b)=b$. The maximum welfare achievable is given by $p^{n} \max \{\phi(a), 0\}+\left(1-p^{n}\right) \phi(b)$, which is exactly $\max \left\{\left(1-p^{n}\right) b, p^{n-1} a+\left(1-p^{n-1}\right) b\right\}$. This proves Fact 1.

### 3.1 The Main Theorem

For any real-valued function $G$, we use $G_{+}$to denote the nonnegative function defined as $G_{+}=$ $\max \{G, 0\}$. The functions $r_{D}(\delta)$ and $r_{B}(\delta)$ below will be used to express revenues.

Definition 3.1. Let $p_{0}=p^{2 n}, p_{1}=2 n p^{2 n-1}(1-p)$, and $p_{2}=2 p^{n}\left(1-p^{n}-n p^{n-1}(1-p)\right)$. Define

$$
\begin{aligned}
r_{D}(\delta)=2\left(1-p^{n}\right) b+p_{0}\left[2 a-\frac{1-p^{2}}{p^{2}}(b-a)\right]_{+} & +p_{1}\left[a-\frac{1-p}{2 p}(b-a)\right]_{+} \\
& +p_{2}\left[a-\frac{1-p}{p}(b-a)\right]_{+} \\
r_{B}(\delta)=2\left(1-p^{n}\right) b+p_{0}\left[2 a-\frac{1-p^{2}}{p^{2}}(b-a)\right]_{+} & +\left(p_{1}+p_{2}\right)\left[a-\frac{1-p}{2 p}(b-a)\right]_{+}
\end{aligned}
$$

Theorem 3.2 (Main Theorem). $R E V_{B}\left(\mathcal{F}_{\delta}\right)=r_{B}(\delta)$ and $R E V_{D}\left(\mathcal{F}_{\delta}\right)=r_{D}(\delta)$.


Fig. 1. $R E V_{B}, R E V_{D}$, and $S R E V$ as functions of $b$

Corollary 3.3.
(a) $R E V_{B}\left(\mathcal{F}_{\delta}\right)=R E V_{D}\left(\mathcal{F}_{\delta}\right)=\operatorname{SREV}\left(\mathcal{F}_{\delta}\right)$ if $b \geq a(1+p) /(1-p)$, $R E V_{B}\left(\mathcal{F}_{\delta}\right)>R E V_{D}\left(\mathcal{F}_{\delta}\right)>\operatorname{SREV}\left(\mathcal{F}_{\delta}\right)$ otherwise.
(b) $R E V_{D}\left(\mathcal{F}_{\delta}\right)=R E V_{B}\left(\mathcal{F}_{\delta}\right)$ if and only if Selling-Separately is optimal.

Remark 1. For fixed $n, p, a$, the functions $r_{B}(\delta), r_{D}(\delta)$ and $\operatorname{SREV}\left(\mathcal{F}_{\delta}\right)$ are each continuous, piecewiselinear functions in $b$ as shown in Figure 1. Breakpoints of linearity occur at $v_{1}=\frac{1+p^{2}}{1-p^{2}} a, v_{2}=\frac{1}{1-p} a$, and $v_{3}=\frac{1+p}{1-p} a$ along the $b$-axis. The last two additive terms of $r_{B}(\delta)$ are 0 when $b \geq v_{1}$, and $b \geq v_{3}$, respectively. Similarly, the last three additive terms of $r_{D}(\delta)$ are 0 when $b \geq v_{1}, b \geq v_{3}$, and $b \geq v_{2}$, respectively.

Remark 2. The formula for $r_{D}(\delta)$ can be interpreted as follows (and likewise for $r_{B}(\delta)$ ). The first term $2\left(1-p^{n}\right) b$ is equal to $s_{b}$. The three additive terms represent the extra revenue, beyond sellingseparately at $b$, that can be gleaned from three specific subsets of profiles. (These subsets are defined as $S_{0}, S_{1}, S_{2}$ in Definition 5 later, with non-zero probability of occurrence $p_{0}, p_{1}, p_{2}$, respectively.)

Corollary 3.3 can be derived as follows. When $b \geq v_{3}=\frac{1+p}{1-p} a$, all terms in square brackets in Definition 1 are 0 , hence $r_{D}(\delta)=r_{B}(\delta)=2\left(1-p^{n}\right) b=s_{b}$. As by definition $s_{b} \leq \operatorname{SREV}\left(\mathcal{F}_{\delta}\right) \leq r_{D}(\delta)$, we conclude $r_{D}(\delta)=r_{B}(\delta)=\operatorname{SREV}\left(\mathcal{F}_{\delta}\right)$ in this case. When $b<v_{3}$, we have $a-\frac{1-p}{2 p}(b-a)>0$, implying

$$
r_{B}(\delta)-r_{D}(\delta)=p_{2}\left(\left[a-\frac{1-p}{2 p}(b-a)\right]_{+}-\left[a-\frac{1-p}{p}(b-a)\right]_{+}\right)>0
$$

To compare $r_{D}(\delta)$ with $\operatorname{SREV}\left(\mathcal{F}_{\delta}\right)$ when $b<v_{3}$, notice that the two continuous piecewise-linear functions are equal when $b=a$ and $b=v_{3}$. It is easy to check from their formulas that, $r_{D}(\delta)$ strictly dominates $\operatorname{SREV}\left(\mathcal{F}_{\delta}\right)$ at both breakpoints $v_{1}$ and $v_{2}$ interior to [ $\left.a, v_{3}\right]$. We conclude that $r_{D}(\delta)>\operatorname{SREV}\left(\mathcal{F}_{\delta}\right)$ over the entire interval $\left(a, v_{3}\right)$. Corollary 3.3(a) follows. Corollary 3.3(b) follows immediately from (a).

Example 1. As an illustration, consider the case $\delta=(n, p, a, b)$ with $n=2, p=\frac{1}{2}, a=1, b=2$. The formulas in the Main Theorem tell us $R E V_{D}\left(\mathcal{F}_{\delta}\right)=\frac{1}{8}(3+11 b)$ for $b \in[2,3)$, and $R E V_{B}\left(\mathcal{F}_{\delta}\right)=$ $\frac{1}{16}(9+21 b)$ for $b \in\left[\frac{5}{3}, 3\right)$. Thus for $b=2$ we have $R E V_{D}\left(\mathcal{F}_{\delta}\right)=25 / 8=3.125$ and $R E V_{B}\left(\mathcal{F}_{\delta}\right)=$ $51 / 16=3.1875$, with a gap of $2 \%$. Note that grand bundling yields only revenue $45 / 16$, while selling separately yields revenue 3 , both strictly less than 3.125 .

Open Questions: It is an interesting open question to determine whether the $2 \%$ gap in Example 1 is the largest gap between DIC and BIC revenue for the family of distributions considered in our model. It would also be interesting to extend our results to more general models, say, where the two items have distinct IID distributions.

### 3.2 Optimal Mechanisms

The optimal revenue $r_{D}(\delta)$ and $r_{B}(\delta)$ stated in the Main Theorem can be realized, respectively, by the IR-DIC mechanism $M_{D, \delta}$ and the IR-BIC mechanism $M_{B, \delta}$ defined below. First, we name the characteristic functions for the three intervals where the individual terms of $r_{D}(\delta), r_{B}(\delta)$ are non-zero.

## Definition 3.4. Define

$$
\begin{cases}\alpha_{p, a, b}=1 & \text { if } b<v_{1}, \\ \beta_{p, a, b}=1 & \text { and } 0 \text { otherwise } \\ \gamma_{p, a, b}=1 & \text { if } b<v_{3}, \\ \text { and } 0 \text { otherwise } \\ \text { and } 0 \text { otherwise. }\end{cases}
$$

The subscripts in $\alpha_{p, a, b}, \gamma_{p, a, b}, \beta_{p, a, b}$ can be dropped when $p, a, b$ are clear from the context. Note that, if desired, the formulas for $r_{D}(\delta)$ and $r_{B}(\delta)$ can be written using $\alpha, \beta, \gamma$ as multipliers in place of the notation $G_{+} \equiv \max \{G, 0\}$.

Definition 3.5. In what follows, the term profile refers to a profile in the support of $\mathcal{F}_{\delta}$, a type refers to a type in $\{a, b\} \times\{a, b\}$. For any profile $t$ and $j \in\{1,2\}$, we say $t^{j}$ is cheap if $t_{i}^{j}=a$ for all $1 \leq i \leq n$ (we also say item $j$ is cheap); otherwise $t^{j}$ is non-cheap. Call a profile $t 1$-cheap if $t$ has exactly 1 cheap item. We use $I(t)$ to denote the subset of buyers $i$ with $t_{i} \neq(a, a)$, that is, only excluding those who value both items at $a$. Note that, if $t$ is 1 -cheap, then $|I(t)|$ is equal to the number of $b$ 's in $t$ (and all appearing in the same column).

We now define mechanism $M_{D, \delta}$ and $M_{B, \delta}$ below, using the language of hierarchy mechanism. First divide the range $(a, \infty)$ of $b$ into 4 subintervals: $I_{1}=\left(a, v_{1}\right), I_{2}=\left[v_{1}, v_{2}\right), I_{3}=\left[v_{2}, v_{3}\right)$ and $I_{4}=\left[v_{3}, \infty\right)$.

```
ALGORITHM 1: Mechanism \(M_{D, \delta}\)
Case 1. \(b \in I_{1}\). Use the hierarchy allocation function \(\left(H^{1}, H^{2}\right)\) where \(H^{1}=[(b, b) ;(b, a) ;(a, b) ;(a, a)]\) and
\(H^{2}=[(b, b) ;(a, b) ;(b, a) ;(a, a)] ;\)
Case 2. \(b \in I_{2}\). Use the hierarchy allocation function \(\left(H^{1}, H^{2}\right)\) where \(H^{1}=[(b, b) ;(b, a) ;(a, b)]\) and
\(H^{2}=[(b, b) ;(a, b) ;(b, a)] ;\)
Case 3. \(b \in I_{3}\). If \(t=\left(t_{i}, t_{-i}\right)\) with \(t_{-i}\) being the lowest profile \((a, a)^{n-1}\), then offer items 1 and 2 to buyer \(i\) as
a bundle at price \(a+b\). Otherwise, use the hierarchy allocation function \(\left(H^{1}, H^{2}\right)\) where \(H^{1}=[(b, b) ;(b, a)]\),
\(H^{2}=[(b, b) ;(a, b)] ;\)
Case 4. \(b \in I_{4}\). Use the hierarchy allocation function \(\left(H^{1}, H^{2}\right)\) where \(H^{1}=[(b, b) ;(b, a)], H^{2}=[(b, b) ;(a, b)]\);
```

The payment of $M\left(\mathcal{F}_{\delta}\right)$ is determined by the following utility function: for $1 \leq i \leq n, t=\left(t_{i}, t_{-i}\right)$,

$$
u_{i}\left(t_{i}, t_{-i}\right)= \begin{cases}(b-a) \frac{\alpha}{n} & \text { if } t_{i}=(b, a) \text { or }(a, b), \text { and } t_{-i}=(a, a)^{n-1}  \tag{1}\\ (b-a)\left(\frac{\alpha}{n}+\beta\right) & \text { if } t_{i}=(b, b), \text { and } t_{-i}=(a, a)^{n-1} \\ (b-a) \frac{\gamma}{1+\left|I\left(t_{-i}\right)\right|} & \text { if } t_{i}=(b, b), t_{-i} \text { is 1-cheap } \\ 0 & \text { otherwise. }\end{cases}
$$

Remark 3. Strictly speaking, $M_{D, \delta}$ in Case 3 is not a hierarchy mechanism. We abuse the term slightly for convenience. Observe that, when $b \in I_{4}, M_{D, \delta}$ can be described as selling each item separately at price $b$ with a particular tie-breaking rule as dictated by the Case 4 allocation function $\left(H^{1}, H^{2}\right)$. When $b \in I_{3}, M_{D, \delta}$ can be described as follows: if $t=\left(t_{i}, t_{-i}\right)$ with $t_{-i}=(a, a)^{n-1}$, then offer items 1 and 2 to buyer $i$ as a bundle at price $a+b$; otherwise sell each item separately at price $b$ with a particular tie-breaking rule as dictated by the Case 3 allocation function $\left(H^{1}, H^{2}\right)$.

## ALGORITHM 2: Mechanism $M_{B, \delta}$

Case 1. $b \in I_{1}$ : Use the hierarchy allocation function as defined in Case 1 of $M_{D, \delta}$;
Case 2. $b \in I_{2} \cup I_{3}$ : Use the hierarchy allocation function as defined in Case 2 of $M_{D, \delta}$;
Case 3. $b \in I_{4}$ : Define $M_{B, \delta}=M_{D, \delta}$;

In both Case 1 and 2, the payment is defined by the same utility function $u_{i}\left(t_{i}, t_{-i}\right)$ as in $M_{D, \delta}$ with only one exception: if $t_{i}=(b, b)$ and $t_{-i}$ is 1 -cheap, then let

$$
u_{i}\left(t_{i}, t_{-i}\right)=\frac{1}{2}(b-a) \frac{\beta}{1+\left|I\left(t_{-i}\right)\right|} .
$$

Remark 4. In fact, $M_{B, \delta}\left(\mathscr{F}_{\delta}\right)$ is an IR-BIC mechanisms (not just BIR-BIC), as will be shown later.

### 3.3 Example 1 Revisited

As an illustration, let us apply mechanisms $M_{D, \delta}$ and $M_{B, \delta}$ to the distribution $\delta=(n, p, a, b)$ in Example 1 where $n=2, p=1 / 2, a=1$ and $b \in[2,3)$. Since both mechanisms are designed to be fully symmetric with respect to the swapping of items 1 and 2 , and to the swapping of buyers 1 and 2 , we only need to specify enough details up to these symmetries. This $\delta$ falls under Case 3 of mechanism $M_{D, \delta}$ and Case 2 of $M_{B, \delta}$, respectively.

```
ALGORITHM 3: Mechanism \(M_{B, \delta}\) for Example 1
Case 1. If \(t_{2}=(1,1)\), then buyer 1 is offered both items as a bundle at price \(1+b\);
Case 2. If \(t_{2}=(1, b)\); ;
if \(t_{1}=(1, b)\), then each buyer is offered \(50 \%\) of both items as a bundle at price \(\frac{1}{2}(1+b)\);
if \(t_{1}=(b, 1)\), then each buyer gets his most-valued item at price \(b\);
if \(t_{1}=(b, b)\), then buyer 1 gets both items as a bundle at price \(2 b-\frac{1}{4}(b-1)\);
Case 3. If \(t_{1}=t_{2}=(b, b)\), then each buyer gets \(50 \%\) of both items as a bundle at price \(b\);
```

Question: What is the difference between the allocations by $M_{D, \delta}$ and $M_{B, \delta}$ in Example 1, and how does $M_{B, \delta}$ manage to outperform $M_{D, \delta}$ ?
Ans. The two mechanisms differ only in the way they handle the following two sets of profiles:
(A) Assume $t_{1}=t_{2}=(1, b)$ or $t_{1}=t_{2}=(b, 1)$. Here $M_{B, \delta}$ offers each buyer $50 \%$ of both items as a bundle at price $\frac{1}{2}(1+b)$, while $M_{D, \delta}$ offers each buyer $50 \%$ of item 2 at price $\frac{b}{2}$;

ALGORITHM 4: Mechanism $M_{D, \delta}$ for Example 1
If any buyer $i$ submits the bid $t_{i}=(1,1)$, then the other buyer is offered items 1 and 2 as a bundle at price $1+b$; otherwise, the items are sold separately at price $b$ each (with a particular tie-breaking rule specified by the hierarchy allocation function $\left(H^{1}, H^{2}\right)$ where $\left.H^{1}=[(b, b) ;(b, a)], H^{2}=[(b, b) ;(a, b)]\right)$;
(B) Assume $i$ has type $(b, b)$ and the other buyer has type $(1, b)$ or $(b, 1)$. Here $M_{B, \delta}$ offers buyer $i$ both items as a bundle at price $2 b-\frac{1}{4}(b-1)$, while $M_{D, \delta}$ offers buyer $i$ both items as a bundle at price $2 b$.

Mechanism $M_{B, \delta}$ gets more payment than $M_{D, \delta}$ in situation A and gets less in situation B , but gains an overall improvement of $\frac{1}{16}(3-b)$ over $M_{B, \delta}$. It is key to observe that mechanism $M_{B, \delta}$ violates the DIC constraint $u_{1}((b, b),(1, b)) \geq u_{1}((1, b),(1, b))+(b-1) q_{1}^{1}((1, b),(1, b))$.

### 3.4 Application to Continuous Distributions

The results in the Main Theorem have implications on the maximum revenue for continuous distributions if the latter can be well approximated by $\mathcal{F}_{\delta}$. As an application, let $\lambda>1, a>\frac{1}{\lambda-1}$, and let $\mathcal{F}=\left(F_{i}^{j} \mid 1 \leq i \leq n, 1 \leq j \leq 2\right)$ be a distribution where $F_{i}^{j}=F$ are IID distributions with $\operatorname{support}\left(X_{F}\right)=[a, a+1] \cup[\lambda a, \lambda a+1]$; let $p=\operatorname{Pr}\left\{X_{F} \leq a+1\right\}$. We can regard $F_{\delta}$, where $\delta=(n, p, 1, \lambda)$, as a normalized discrete approximation of $\mathcal{F}$.

Corollary 3.6. Let $\delta=(n, p, 1, \lambda)$. There exists a constant $C_{\delta}$ such that

$$
\left|R E V_{Z}(\mathcal{F})-r_{Z}(\delta) \cdot a\right|<C_{\delta} \text { for } Z \in\{D, B\}
$$

Corollary 3.6 is proved by an extension of our proof of the Main Theorem to the continuous setting (details omitted here).

Remark 5. There are general high-precision approximation theorems in the literature (e.g. see[6, 11, $20,27]$ ) connecting continuous and discrete distributions for the BIC maximum revenue auction. Our derivation of Corollary 3.6 does not rely on such general theorems.

We consider an illustrative example of Corollary 3.6 where $n=2$. Let $\mathcal{G}_{a}=\left(F_{i}^{j} \mid i, j \in\{1,2\}\right)$, where $F_{i}^{j}=F$ are IID distributions with $X_{F}$ uniformly distributed over $[a, a+1] \cup[2 a, 2 a+1]$. According to Corollary 3.6, we have $\frac{1}{a} \lim _{a \rightarrow \infty} R E V_{Z}\left(G_{a}\right)=r_{Z}(\delta)$ for $Z \in\{D, B\}$ where $\delta=\left(2, \frac{1}{2}, 1,2\right)$. More precise bounds for this example are given below. Note that from Definition 1, one has $r_{D}(\delta)=\frac{25}{8}$ and $r_{B}(\delta)=\frac{51}{16}$, with a $2 \%$ difference.

Corollary 3.7. For $a \geq 20$, the BIC maximum revenue for $\mathcal{G}_{a}$ strictly exceeds its DIC maximum revenue. In fact, we have for $a \geq 6$,

$$
\begin{aligned}
& \frac{25}{8} a \leq R E V_{D}\left(\mathcal{G}_{a}\right)<\frac{25}{8} a+\frac{5}{4} \\
& \frac{51}{16} a \leq R E V_{B}\left(\mathcal{G}_{a}\right)<\frac{51}{16} a+\frac{3}{2} .
\end{aligned}
$$

## 4 DIC MAXIMUM REVENUE

In this section we give a proof outline of the Main Theorem for the dominant strategy implementation:

Theorem 4.1. Any IR-DIC mechanisms $M$ must satisfy $M\left(\mathcal{F}_{\delta}\right) \leq r_{D}(\delta)$.
Theorem 4.2. $M_{D, \delta}$ is $I R-D I C$, and $M_{D, \delta}\left(\mathcal{F}_{\delta}\right)=r_{D}(\delta)$.

We begin with a general discussion applicable to any mechanism. Let $M$ be a mechanism with allocation $q_{i}^{j}$ and utility $u_{i}$. We separate out the allocation of cheap items from non-cheap items. Thus, define $q_{i}^{\prime j}(t)=q_{i}^{j}(t) \eta^{j}(t)$ where $\eta^{j}(t)=1$ if item $j$ is cheap, and $\eta^{j}(t)=0$ if $j$ is non-cheap. Note that the welfare of the buyers from the allocation of cheap items is $a \cdot \sum_{i, j, t} \operatorname{Pr}\{t\} q_{i}^{j}(t)$, while the welfare from the non-cheap items is $\sum_{i, j, t} \operatorname{Pr}\{t\}\left(1-\eta^{j}(t)\right) q_{i}^{j}(t) t_{i}^{j}$ which is at most $2\left(1-p^{n}\right) b$ (the revenue obtained by selling-separately at price $b$ ). By definition of utility, it is clear that the revenue $M\left(\mathcal{F}_{\delta}\right)$ equals the total welfare minus utility of the buyers. This leads to the following formula:
Basic Formula. For any mechanism $M$, we have

$$
M\left(\mathcal{F}_{\delta}\right) \leq 2\left(1-p^{n}\right) b+Q a-U
$$

where $Q=\sum_{i, j, t} \operatorname{Pr}\{t\} q^{\prime j}(t)$ and $U=\sum_{i, t} \operatorname{Pr}\{t\} u_{i}(t)$.
Definition 4.3. For any set $S$ of profiles, let $Q(S)=\sum_{t \in S} \operatorname{Pr}\{t\} \sum_{i, j} q_{i}^{\prime j}(t)$ and $U(S)=\sum_{t \in S} \operatorname{Pr}\{t\} \sum_{i} u_{i}(t)$.

To make use of the Basic Formula, we partition the profiles that can possibly contribute to the $Q$ term into three subsets $S_{0}, S_{1}, S_{2}$, and then use the IR-DIC Conditions to show that the $U$ term (utility obtained by buyers) is greater than a certain linear combination of $Q\left(S_{0}\right), Q\left(S_{1}\right), Q\left(S_{2}\right)$. The Basic Formula then yields $r_{D}(\delta)$ as an upper bound to $M\left(\mathcal{F}_{\delta}\right)$.

Definition 4.4. Let $S_{0}=\left\{(a, a)^{n}\right\}$ be the set containing a single element, namely, the lowest profile. Let $S_{1}$ be the set of 1-cheap profiles $t$ satisfying $|I(t)|=1$. Let $S_{2}$ be the set of 1-cheap profiles $t$ satisfying $|I(t)| \geq 2$.

Fact 2. $q_{i}^{\prime j}(t)=0$ for all $t \notin S_{0} \cup S_{1} \cup S_{2}$.
Recall that $p_{0}=p^{2 n}, p_{1}=2 n p^{2 n-1}(1-p), p_{2}=2 p^{n}\left(1-p^{n}-n p^{n-1}(1-p)\right)$. They have the following interpretation as can be easily verified.
Fact 3. $\operatorname{Pr}\left\{t \in S_{\ell}\right\}=p_{\ell}$ for $\ell \in\{0,1,2\}$, where $t$ is distributed according to $\mathcal{F}_{\delta}$.
Lemma 4.5.

$$
\begin{equation*}
Q\left(S_{0}\right) \leq 2 p_{0}, Q\left(S_{1}\right) \leq p_{1}, Q\left(S_{2}\right) \leq p_{2} \tag{2}
\end{equation*}
$$

Proof. Any profile in $S_{1}$ or $S_{2}$ has exactly one cheap item, and the (only) profile in $S_{0}$ has two cheap items. Lemma 4.5 then follows from Fact 3.

Lemma 4.6.

$$
\begin{equation*}
M\left(\mathcal{F}_{\delta}\right) \leq 2 b\left(1-p^{n}\right)+a \sum_{0 \leq \ell \leq 2} Q\left(S_{\ell}\right)-U \tag{3}
\end{equation*}
$$

Proof. It follows from Fact 2 that $Q=Q\left(S_{0}\right)+Q\left(S_{1}\right)+Q\left(S_{2}\right)$. Lemma 4.6 then follows from the Basic Formula.

Lemmas 4.5 and 4.6 set the stage. We are ready to invoke the incentive compatibility requirements to prove Theorem 4.1. This setting is also useful in the next section when we prove the BIC part of the Main Theorem.

### 4.1 Upper Bound to DIC Revenue

We prove Theorem 4.1 in this subsection. The key is to prove the following proposition. Proposition 1. Any IR-DIC mechanism $M$ must satisfy the following inequality:

$$
\begin{equation*}
U \geq(b-a)\left(\frac{1-p^{2}}{2 p^{2}} Q\left(S_{0}\right)+\frac{1-p}{2 p} Q\left(S_{1}\right)+\frac{1-p}{p} Q\left(S_{2}\right)\right) \tag{4}
\end{equation*}
$$

We first show that Theorem 4.1 follows from Proposition 1. It follows from Lemma 4.6 and Proposition 1 that, for any IR-DIC mechanism $M$, we have

$$
\begin{aligned}
M\left(\mathcal{F}_{\delta}\right) \leq 2\left(1-p^{n}\right) b & +Q\left(S_{0}\right)\left[a-\frac{1-p^{2}}{2 p^{2}}(b-a)\right]_{+} \\
& +Q\left(S_{1}\right)\left[a-\frac{1-p}{2 p}(b-a)\right]_{+} \\
& +Q\left(S_{2}\right)\left[a-\frac{1-p}{p}(b-a)\right]_{+}
\end{aligned}
$$

With no negative terms, the above expression together with Lemma 4.5 immediately yield Theorem 4.1. Thus to establish Theorem 4.1, it suffices to prove Proposition 1.

Definition 4.7. For any $1 \leq i, i^{\prime} \leq n$,
let $\tau_{i, i^{\prime}}$ be the profile $t$ such that $t_{i}^{1}=t_{i^{\prime}}^{2}=b$ and all other $t_{\ell}^{j}=a$;
let $\tau_{i, 0}$ be the profile $t$ with $t_{i}^{1}=b$ and all other $t_{\ell}^{j}=a$;
let $\tau_{0, i^{\prime}}$ be the profile $t$ with $t_{i^{\prime}}^{2}=b$ and all other $t_{\ell}^{j}=a$;
let $\tau_{0,0}=(a, a)^{n}$.
Fact 4. $S_{0}=\left\{\tau_{0,0}\right\}, S_{1}=\left\{\tau_{i, 0}, \tau_{0, i} \mid 1 \leq i \leq n\right\}$.
Definition 4.8. For any $t \in S_{2}$ and $1 \leq i \leq n$, define $\tau_{t, i}$ as follows: let item $j(j \in\{1,2\})$ be the cheap item for $t$; define $\tau_{t, i}=t^{\prime}$ where $t^{\prime j}{ }_{i}=b$ and $t^{\prime j^{\prime}}=t_{i^{\prime}}^{j^{\prime}}$ for all other $\left(i^{\prime}, j^{\prime}\right) \neq(i, j)$.

Definition 4.9. Let $S_{1}^{\prime}=\left\{\tau_{i, i^{\prime}} \mid 1 \leq i, i^{\prime} \leq n\right\}$. Let $S_{2}^{\prime}=\left\{\tau_{t, i} \mid t \in S_{2}, 1 \leq i \leq n\right\}$.
Fact 5. $S_{1}^{\prime}, S_{2}^{\prime}$ are disjoint sets of profiles containing no cheap items.
From Fact 5 and the IR Conditions, we have

$$
\begin{equation*}
U \geq U\left(S_{1}\right)+U\left(S_{1}^{\prime}\right)+U\left(S_{2}^{\prime}\right) \tag{5}
\end{equation*}
$$

We now utilize the DIC-conditions to establish the following lemma relating the $U$ and $Q$ values on different types.

Lemma 4.10.

$$
\begin{align*}
& U\left(S_{1}\right) \geq \frac{1-p}{p}\left((b-a) Q\left(S_{0}\right)+2 U\left(S_{0}\right)\right)  \tag{6}\\
& U\left(S_{1}^{\prime}\right) \geq \frac{1-p}{2 p}\left((b-a) Q\left(S_{1}\right)+U\left(S_{1}\right)\right)  \tag{7}\\
& U\left(S_{2}^{\prime}\right) \geq \frac{1-p}{p}\left((b-a) Q\left(S_{2}\right)+U\left(S_{2}\right)\right) \tag{8}
\end{align*}
$$

Proof. The DIC-conditions require that, for all $t_{i}, t_{i}^{\prime}, t_{-i}$,

$$
u_{i}\left(t_{i}, t_{-i}\right) \geq u_{i}\left(t_{i}^{\prime}, t_{-i}\right)+\sum_{j}\left(t_{i}^{j}-t_{i}^{\prime j}\right) q_{i}^{j}\left(t_{i}^{\prime}, t_{-i}\right)
$$

We only need a subset of these conditions where $t_{i}>t_{i}^{\prime}$. In such cases, we can use $q_{i}^{\prime j}$ instead of $q_{i}^{j}$ and write
DIC-Conditions: For all $t_{i}>t_{i}^{\prime}$ and any $t_{-i}$,

$$
\begin{equation*}
u_{i}\left(t_{i}, t_{-i}\right) \geq u_{i}\left(t_{i}^{\prime}, t_{-i}\right)+\sum_{j}\left(t_{i}^{j}-t_{i}^{\prime j}\right) q_{i}^{\prime j}\left(t_{i}^{\prime}, t_{-i}\right) \tag{9}
\end{equation*}
$$

To prove Eq. 6, consider $t_{i} \in\{(b, a),(a, b)\}, t_{i}^{\prime}=(a, a)$. We have

$$
\begin{align*}
& u_{i}\left(\tau_{i, 0}\right) \\
\text { and } & u_{i}\left((b, a),(a, a)^{n-1}\right) \geq u_{i}\left(\tau_{0,0}\right)+(b-a) q^{\prime}{ }_{i}^{\prime}\left(\tau_{0,0}\right),  \tag{10}\\
& \left.u_{0, i}\right) \geq u_{i}\left(\tau_{0,0}\right)+(b-a) q^{\prime 2}\left(\tau_{0,0}\right) .
\end{align*}
$$

By Fact 4 we have

$$
\begin{aligned}
U\left(S_{1}\right) & =\sum_{t \in S_{1}} \operatorname{Pr}\{t\} \sum_{i^{\prime}} u_{i^{\prime}}(t) \\
& =p^{2 n-1}(1-p) \sum_{i}\left(\sum_{i^{\prime}} u_{i^{\prime}}\left(\tau_{i, 0}\right)+\sum_{i^{\prime}} u_{i^{\prime}}\left(\tau_{0, i}\right)\right) .
\end{aligned}
$$

Using Eq. 10 and the IR Conditions $u_{i^{\prime}}(t) \geq 0$, we obtain

$$
\begin{aligned}
U\left(S_{1}\right) & \geq p^{2 n-1}(1-p)\left(\sum_{i} u_{i}\left(\tau_{i, 0}\right)+\sum_{i} u_{i}\left(\tau_{0, i}\right)\right) \\
& \geq p^{2 n-1}(1-p) \sum_{i}\left(2 u_{i}\left(\tau_{0,0}\right)+(b-a) q_{i}^{\prime 1}\left(\tau_{0,0}\right)+(b-a) q_{i}^{\prime 2}\left(\tau_{0,0}\right)\right) \\
& =\frac{1-p}{p} \operatorname{Pr}\left\{\tau_{0,0}\right\}\left(2 \sum_{i} u_{i}\left(\tau_{0,0}\right)+(b-a) \sum_{j} \sum_{i} q_{i}^{\prime j}\left(\tau_{0,0}\right)\right) \\
& =\frac{1-p}{p}\left(2 U\left(S_{0}\right)+(b-a) Q\left(S_{0}\right)\right) .
\end{aligned}
$$

This proves Eq. 6, the first inequality in the Lemma.
We now prove Eq. 7. Write $S_{1}=S_{1}^{L} \cup S_{1}^{R}$ where $S_{1}^{L}=\left\{\tau_{0, i} \mid 1 \leq i \leq n\right\}$ and $S_{1}^{R}=\left\{\tau_{i, 0} \mid 1 \leq i \leq n\right\}$. It suffices to prove for $x \in\{L, R\}$,

$$
\begin{equation*}
U\left(S_{1}^{\prime}\right) \geq \frac{1-p}{p}\left((b-a) Q\left(S_{1}^{x}\right)+U\left(S_{1}^{x}\right)\right) \tag{11}
\end{equation*}
$$

We prove Eq. 11 for $x=L$; the case for $x=R$ is similar.

$$
\begin{align*}
(b-a) Q\left(S_{1}^{L}\right)+U\left(S_{1}^{L}\right) & =\sum_{t \in S_{1}^{L}} \operatorname{Pr}\{t\}\left((b-a) \sum_{j} \sum_{i} q_{i}^{\prime j}(t)+\sum_{i} u_{i}(t)\right) \\
& =\sum_{t \in S_{1}^{L}} p^{2 n-1}(1-p) \sum_{i}\left((b-a) q_{i}^{\prime 1}(t)+u_{i}(t)\right) \\
& =p^{2 n-1}(1-p) \sum_{i^{\prime}} \sum_{i}\left((b-a) q_{i}^{\prime 1}\left(\tau_{0, i^{\prime}}\right)+u_{i}\left(\tau_{0, i^{\prime}}\right)\right) . \tag{12}
\end{align*}
$$

Now consider the DIC-Conditions (Eq. 9) for $\left(t_{i}, t_{-i}\right)=\tau_{i, i^{\prime}}$ and $\left(t_{i}^{\prime}, t_{-i}\right)=\tau_{0, i^{\prime}}$, which gives

$$
\begin{equation*}
u_{i}\left(\tau_{i, i^{\prime}}\right) \geq u_{i}\left(\tau_{0, i^{\prime}}\right)+(b-a) q_{i}^{\prime 1}\left(\tau_{0, i^{\prime}}\right) . \tag{13}
\end{equation*}
$$

From Eqs. 12 and 13, we obtain

$$
\begin{aligned}
(b-a) Q\left(S_{1}^{L}\right)+U\left(S_{1}^{L}\right) & \leq p^{2 n-1}(1-p) \sum_{i} \sum_{i^{\prime}} u_{i}\left(\tau_{i, i^{\prime}}\right) \\
& \leq \frac{p}{1-p} \sum_{i} \sum_{i^{\prime}} \operatorname{Pr}\left\{\tau_{i, i^{\prime}}\right\} \sum_{i^{\prime \prime}} u_{i^{\prime \prime}}\left(\tau_{i, i^{\prime}}\right) \\
& =\frac{p}{1-p} \sum_{t \in S_{1}^{\prime}} \operatorname{Pr}\{t\} \sum_{i} u_{i}(t) \\
& =\frac{p}{1-p} U\left(S_{1}^{\prime}\right)
\end{aligned}
$$

This proves Eq. 11, thus completing the proof of Eq. 7.
We now prove Eq. 8, the third inequality of Lemma 4.10. By definition

$$
\begin{equation*}
(b-a) Q\left(S_{2}\right)+U\left(S_{2}\right)=\sum_{t \in S_{2}} \operatorname{Pr}\{t\}\left((b-a) \sum_{i, j} q_{i}^{\prime j}(t)+\sum_{i} u_{i}(t)\right) \tag{14}
\end{equation*}
$$

Now observe that the DIC-Condition Eq. 9 for $\tau_{t, i} \in S_{2}^{\prime}$ and $t \in S_{2}$ implies $^{2}$

$$
\begin{equation*}
u_{i}\left(\tau_{t, i}\right) \geq u_{i}(t)+(b-a) \sum_{j} q_{i}^{\prime j}(t) \tag{15}
\end{equation*}
$$

From Eq. 14 and 15, we obtain

$$
\begin{aligned}
(b-a) Q\left(S_{2}\right)+U\left(S_{2}\right) & \leq \sum_{t \in S_{2}} \operatorname{Pr}\{t\} \sum_{i} u_{i}\left(\tau_{t, i}\right) \\
& =\frac{p}{1-p} \sum_{t \in S_{2}} \sum_{i} \operatorname{Pr}\left\{\tau_{t, i}\right\} u_{i}\left(\tau_{t, i}\right) \\
& \leq \frac{p}{1-p} \sum_{t \in S_{2}^{\prime}} \operatorname{Pr}\{t\} \sum_{i^{\prime \prime}} u_{i}(t) \\
& =\frac{p}{1-p} U\left(S_{2}^{\prime}\right)
\end{aligned}
$$

This proves Eq. 8. We have completed the proof of the Lemma 4.10.
Proposition 1 can be straightforwardly derived from Lemma 4.10, Eq. 5, and the IR conditions $U\left(S_{0}\right), U\left(S_{2}\right) \geq 0$. This completes the proof of Proposition 1 and hence Theorem 4.1.

### 4.2 Realizing DIC Revenue

We turn to the proof of Theorem 4.2. We need to prove two statements.
Statement 1. $M_{D, \delta}$ is IR and DIC;
Statement 2. $M_{D, \delta}\left(\mathcal{F}_{\delta}\right)=r_{D}(\delta)$.
The proof of Statement 1 is straightforward by case analysis, and is omitted here (see the Appendix of arXiv: 1607.03685). For the rest of this subsection, we prove Statement 2. Here is the top level view of the proof. To show that the upper bound on revenue from Theorem 4.1 can be achieved, we demonstrate that several critical inequalities involved in the upper bound proof can be replaced by equalities. First, for mechanism $M_{D, \delta}$, it can be verified that Eqs. 3, 4 now are equalities, while

[^1]Eq. 2 is replaced by $Q\left(S_{0}\right)=2 \alpha p_{0}, Q\left(S_{1}\right)=\beta p_{1}, Q\left(S_{2}\right)=\gamma p_{2}$. Combining these equalities gives us $M_{D, \delta}\left(\mathcal{F}_{\delta}\right)=r_{D}(\delta)$. We now give the details.
Fact 6. $u_{i}(t)=0$ for all $t \notin S_{1} \cup S_{1}^{\prime} \cup S_{2}^{\prime}$ and all $i$. Thus, $U=U\left(S_{1}\right)+U\left(S_{1}^{\prime}\right)+U\left(S_{2}^{\prime}\right)$.
Proof. From Eq. 1, we know that $u_{i}(t) \neq 0$ may occur only when $t=\left(t_{i}, t_{-i}\right)$ and one of the following is valid: (a) $t_{-i}=(a, a)^{n-1}$ and $t_{i} \neq(a, a)$; (b) $t_{-i}$ is 1-cheap and $t_{i}=(b, b)$. In case (a) we have $t \in S_{1} \cup S_{1}^{\prime}$, and in case (b) we have $t \in S_{2}^{\prime}$.
Fact 7.

$$
\sum_{i, j}{q^{\prime j}}_{i}^{j}(t)= \begin{cases}2 \alpha & \text { if } t \in S_{0}  \tag{16}\\ \beta & \text { if } t \in S_{1} \\ \gamma & \text { if } t \in S_{2}\end{cases}
$$

Proof. For the (only) profile $t$ in $S_{0}$, the allocation function of $M_{D, \delta}$ specifies $\sum_{i, j} q_{i}^{\prime j}(t)=2$ if $b<v_{1}$, and 0 otherwise. Similarly, for any profile $t \in S_{1}, \sum_{i, j} q^{\prime j}(t)=1$ if $b<v_{3}$, and 0 otherwise; and for any profile $t \in S_{2}, \sum_{i, j} q_{i}^{\prime j}(t)=1$ if $b<v_{2}$, and 0 otherwise. This is exactly the assertion of Fact 7.

Lemma 4.11.

$$
\begin{equation*}
Q\left(S_{0}\right)=2 p_{0} \alpha, Q\left(S_{1}\right)=p_{1} \beta, Q\left(S_{2}\right)=p_{2} \gamma \tag{17}
\end{equation*}
$$

Proof. Follows immediately from Fact 3 and 7.
Lemma 4.12.

$$
M_{D, \delta}\left(\mathcal{F}_{\delta}\right)=2\left(1-p^{n}\right) b+a \sum_{0 \leq \ell \leq 2} Q\left(S_{\ell}\right)-\left(U\left(S_{1}\right)+U\left(S_{1}^{\prime}\right)+U\left(S_{2}^{\prime}\right)\right)
$$

Proof. As under $M_{D, \delta}$ all the non-cheap items are allocated in full, the Basic Formula achieves equality, i.e. $M_{D, \delta}\left(\mathcal{F}_{\delta}\right)=2\left(1-p^{n}\right) b+Q a-U$. Also from Fact 2 we have $Q=Q\left(S_{0}\right)+Q\left(S_{1}\right)+Q\left(S_{2}\right)$, and from Fact 6 we have $U=U\left(S_{1}\right)+U\left(S_{1}^{\prime}\right)+U\left(S_{2}^{\prime}\right)$. Lemma 4.12 follows.

Lemma 4.13.

$$
\begin{align*}
& U\left(S_{1}\right)=(b-a) \frac{1-p}{p} Q\left(S_{0}\right),  \tag{18}\\
& U\left(S_{1}^{\prime}\right)=(b-a) \frac{1}{2}\left(\left(\frac{1-p}{p}\right)^{2} Q\left(S_{0}\right)+\left(\frac{1-p}{p}\right) Q\left(S_{1}\right)\right),  \tag{19}\\
& U\left(S_{2}^{\prime}\right)=(b-a) \frac{1-p}{p} Q\left(S_{2}\right) . \tag{20}
\end{align*}
$$

Proof. Eq. 18 can easily be derived from Eq. 1, Lemma 4.11, and Fact 3. We omit the proof here.
To prove Eq. 19, note that for any $\tau_{i, i^{\prime}} \in S_{1}^{\prime}$, Eq. 1 implies $\sum_{i^{\prime \prime}} u_{i^{\prime \prime}}\left(\tau_{i, i^{\prime}}\right)=\left(\frac{\alpha}{n}+\beta\right)(b-a)$ if $i=i^{\prime}$, and 0 otherwise. Thus we have

$$
\begin{aligned}
U\left(S_{1}^{\prime}\right) & =\sum_{t \in S_{1}^{\prime}} \operatorname{Pr}\{t\} \sum_{i^{\prime \prime}} u_{i^{\prime \prime}}(t) \\
& =\sum_{i, i^{\prime}} \operatorname{Pr}\left\{\tau_{i, i^{\prime}}\right\} \sum_{i^{\prime \prime}} u_{i^{\prime \prime}}\left(\tau_{i, i^{\prime}}\right) \\
& =\sum_{i} \operatorname{Pr}\left\{\tau_{i, i}\right\}\left(\frac{\alpha}{n}+\beta\right)(b-a) \\
& =p^{2 n-2}(1-p)^{2}(\alpha+n \beta)(b-a) .
\end{aligned}
$$

Making use of Lemma 4.11 and Fact 3, we obtain Eq. 19.
To prove Eq. 20 , note that for any $t \in S_{2}, 1 \leq i, i^{\prime} \leq n$ we have from Eq. 1

$$
u_{i^{\prime}}\left(\tau_{t, i}\right)= \begin{cases}\frac{\gamma}{|I(t)|}(b-a) & \text { if } i^{\prime}=i \in I(t)  \tag{21}\\ 0 & \text { otherwise }\end{cases}
$$

It follows that

$$
\begin{align*}
U\left(S_{2}^{\prime}\right) & =\sum_{t^{\prime} \in S_{2}^{\prime}} \operatorname{Pr}\left\{t^{\prime}\right\} \sum_{i^{\prime}} u_{i^{\prime}}\left(t^{\prime}\right) \\
& =\sum_{t \in S_{2}} \sum_{i} \frac{1-p}{p} \operatorname{Pr}\{t\} \sum_{i^{\prime}} u_{i^{\prime}}\left(\tau_{t, i}\right) \\
& =\frac{1-p}{p} \sum_{t \in S_{2}} \operatorname{Pr}\{t\} \sum_{i \in I(t)} \frac{\gamma}{|I(t)|}(b-a) \\
& =\frac{1-p}{p} \gamma(b-a) \sum_{t \in S_{2}} \operatorname{Pr}\{t\} \\
& =(b-a) \frac{1-p}{p} Q\left(S_{2}\right), \tag{22}
\end{align*}
$$

where we used Lemma 4.11 and Fact 3 in the last step. This proves Eq. 20. We have finished the proof of Lemma 4.13.

Using Lemmas 4.11-4.13 and simplifying the above equation, we obtain

$$
M_{D, \delta}\left(\mathcal{F}_{\delta}\right)=r_{D}(\delta)
$$

This proves Statement 2, and completes the proof of Theorem 4.2.

## 5 BIC MAXIMUM REVENUE

In this section we give a proof of the Main Theorem for the Bayesian implementation:
Theorem 5.1. Any BIR-BIC mechanisms $M$ must satisfy $M\left(\mathcal{F}_{\delta}\right) \leq r_{B}(\delta)$.
Theorem 5.2. $M_{B, \delta}$ is IR-BIC, and $M_{B, \delta}\left(\mathcal{F}_{\delta}\right)=r_{B}(\delta)$.
The proofs of Theorem 5.1 and 5.2 follow the same top-level outline as the proofs of Theorem 4.1 and 4.2. Lemma 4.5 and 4.6 proved in Section 4 are valid for any mechanism $M$, and will also be the starting point for the BIC proof.

### 5.1 Upper Bound to BIC Revenue

We prove Theorem 5.1 in this subsection. The key is to prove the following proposition. Proposition 2. Any BIR-BIC mechanism $M$ must satisfy the following inequality:

$$
U \geq(b-a)\left(\frac{1-p^{2}}{2 p^{2}} Q\left(S_{0}\right)+\frac{1-p}{2 p}\left(Q\left(S_{1}\right)+Q\left(S_{2}\right)\right)\right) .
$$

Theorem 5.1 can be derived from Lemma 4.5, 4.6 and Proposition 2 in exactly the same way as Theorem 4.1's derivation from Lemma 4.5, 4.6 and Proposition 1, and will not be repeated here. It remains to prove Proposition 2.

We use a subset of the BIR-BIC Conditions in our proof; these conditions are listed below for easy reference.
(a) BIR Condition: For each $i$,

$$
\begin{equation*}
\bar{u}_{i}\left(t_{i}\right) \geq 0 \text { where } t_{i}=(a, a) . \tag{23}
\end{equation*}
$$

(b) BIC Condition: For each $i$,

$$
\begin{align*}
& \bar{u}_{i}(b, a) \geq \bar{u}_{i}(a, a)+(b-a){\overline{q^{\prime}}}_{i}^{\prime}(a, a) .  \tag{24}\\
& \bar{u}_{i}(a, b) \geq \bar{u}_{i}(a, a)+(b-a){\overline{q^{\prime}}}_{i}^{2}(a, a) .  \tag{25}\\
& \bar{u}_{i}(b, b) \geq \bar{u}_{i}(a, b)+(b-a){\overline{q^{\prime}}}_{i}^{1}(a, b) .  \tag{26}\\
& \bar{u}_{i}(b, b) \geq \bar{u}_{i}(b, a)+(b-a){\overline{q^{\prime}}}_{i}^{2}(b, a) . \tag{27}
\end{align*}
$$

The plan is to use Eqs. 23-27 to obtain a lower bound on $U$ in terms of $Q\left(S_{0}\right), Q\left(S_{1}\right)$ and $Q\left(S_{2}\right)$.
Lemma 5.3. For each $i$,

$$
\bar{u}_{i}(b, a)+\bar{u}_{i}(a, b) \geq(b-a) \sum_{j} \bar{q}_{i}^{\prime \prime}(a, a)
$$

Proof. Immediate from Eqs. 23-25.

Lemma 5.4. For each $i$,

$$
\begin{aligned}
\bar{u}_{i}(b, b) & \geq \frac{1}{2}(b-a) \sum_{j} \bar{q}_{i}^{\prime j}(a, a) \\
& +\frac{1}{2}(b-a) \sum_{j}\left({\overline{q^{\prime}}}_{i}^{\prime j}(a, b)+{\overline{q^{\prime}}}_{i}^{\prime j}(b, a)\right)
\end{aligned}
$$

Proof. Adding up Eqs. 26 and 27, we obtain

$$
\begin{align*}
& \bar{u}_{i}(b, b) \geq \frac{1}{2}\left(\bar{u}_{i}(b, a)+\bar{u}_{i}(b, a)\right) \\
&+\frac{1}{2}(b-a) \sum_{j}\left({\overline{q^{\prime}}}_{i}^{\prime \prime}(a, b)+\bar{q}_{i}^{\prime}\right.  \tag{28}\\
&(b, a))
\end{align*}
$$

where we have used the fact that $q_{i}^{\prime 2}\left((a, b), t_{-i}\right)=q_{i}^{\prime}\left((b, a), t_{-i}\right)=0$ for all $t_{-i}$. Lemma 5.4 now follows by using Lemma 5.3 on Eq. 28.

We now express $U$ as a convex combination of the left-hand sides of Eq 23, Lemmas 5.3 and 5.4, and obtain a lower bound in terms of $Q\left(S_{\ell}\right)$ :

$$
\begin{align*}
U & =\sum_{i} \sum_{t} \operatorname{Pr}\{t\} u_{i}(t) \\
& =p^{2} \sum_{i} \bar{u}_{i}(a, a) \\
& +p(1-p) \sum_{i}\left(\bar{u}_{i}(b, a)+\bar{u}_{i}(a, b)\right) \\
& +(1-p)^{2} \sum_{i} \bar{u}_{i}(b, b) \\
& \geq C_{1}+C_{2} \tag{29}
\end{align*}
$$

where

$$
\begin{align*}
C_{1} & =(b-a)\left(p(1-p)+\frac{1}{2}(1-p)^{2}\right)\left[\sum_{i} \sum_{t_{-i}} \operatorname{Pr}\left\{t_{-i}\right\} \sum_{j} q_{i}^{\prime j}\left((a, a), t_{-i}\right)\right] \\
& =(b-a) \frac{1-p^{2}}{2} \sum_{i} \sum_{t_{-i}} \operatorname{Pr}\left\{t_{-i}\right\} \sum_{j} q_{i}^{\prime j}\left((a, a), t_{-i}\right),  \tag{30}\\
\text { and } \quad C_{2} & =\frac{1}{2}(b-a)(1-p)^{2} \sum_{i} \sum_{t_{-i}} \operatorname{Pr}\left\{t_{-i}\right\} \sum_{j}\left(q_{i}^{\prime j}\left((a, b), t_{-i}\right)+q_{i}^{\prime j}\left((b, a), t_{-i}\right)\right) . \tag{31}
\end{align*}
$$

Separating out the $t_{-i}=(a, a)^{n-1}$ term in Eq. 30, we obtain

$$
\begin{aligned}
& C_{1}=(b-a) \frac{1-p^{2}}{2}\left[\sum_{i} p^{2 n-2} \sum_{j} q_{i}^{\prime j}\left(\tau_{00}\right)\right. \\
&\left.+\sum_{i} \sum_{t_{-i} \neq(a, a) a^{n-1}} \operatorname{Pr}\left\{t_{-i}\right\} \sum_{j} q_{i}^{\prime j}\left((a, a), t_{-i}\right)\right] \\
& \geq(b-a) \frac{1-p^{2}}{2 p^{2}} \operatorname{Pr}\left\{\tau_{00}\right\} \sum_{i, j} q_{i}^{\prime j}\left(\tau_{00}\right) \\
&+(b-a) \frac{1-p}{2 p} \sum_{\substack{t, i, t_{i}=(a, a) \\
t_{-i} \neq(a, a)^{n-1}}} \operatorname{Pr}\{t\} \sum_{j} q_{i}^{\prime j}(t), \\
& C_{2}=(b-a) \frac{1-p}{2 p} \sum_{\substack{t, i \\
t_{i} \in\{(a, b),(b, a)\}}} \operatorname{Pr}\{t\} \sum_{j} q_{i}^{\prime j}(t) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
C_{1}+C_{2} & \geq(b-a) \frac{1-p^{2}}{2 p^{2}} Q\left(S_{0}\right) \\
& +(b-a) \frac{1-p}{2 p} \sum_{t \neq \tau_{00}} \sum_{i, t_{i} \neq(b, b)} \operatorname{Pr}\{t\} \sum_{j} q_{i}^{j j}(t) .
\end{aligned}
$$

Now, noting that $\sum_{j} q^{\prime \prime}{ }_{i}(t)=0$ if $t_{i}=(b, b)$, we have

$$
\begin{align*}
\sum_{t \neq \tau_{00}} \sum_{i, t_{i} \neq(b, b)} \operatorname{Pr}\{t\} \sum_{j} q_{i}^{\prime j}(t) & =\sum_{t \neq \tau_{00}} \operatorname{Pr}\{t\} \sum_{i} \sum_{j} q_{i}^{\prime j}(t) \\
& =\sum_{t \in S_{1} \cup S_{2}} \operatorname{Pr}\{t\} \sum_{i} \sum_{j} q_{i}^{\prime j}(t) \\
& =Q\left(S_{1}\right)+Q\left(S_{2}\right) \tag{32}
\end{align*}
$$

where we have used Fact 2.
It follows from Eqs. 30-32 that

$$
U \geq(b-a) \frac{1-p^{2}}{2 p^{2}} Q\left(S_{0}\right)+(b-a) \frac{1-p}{2 p}\left(Q\left(S_{1}\right)+Q\left(S_{2}\right)\right) .
$$

This proves Proposition 2, and completes the proof of Theorem 5.1.

### 5.2 Realizing BIC Revenue

To prove Theorem 5.2, it suffices to prove the following two statements.
Statement 3. $M_{B, \delta}$ is IR and BIC.
Statement 4. $M_{B, \delta}\left(\mathcal{F}_{\delta}\right)=r_{B}(\delta)$.
The proof of Statement 3 is straightforward, and is omitted here (see the Appendix of arXiv: 1607.03685). The rest of this subsection is devoted to the proof of Statement 4. The statement is clearly true if $b \geq v_{3}$ (i.e. Case 3 in the definition of $M_{B, \delta}$ ), since in this case by definition $r_{B}(\delta)=r_{D}(\delta), M_{B}\left(\mathcal{F}_{\delta}\right)=M_{D}\left(\mathcal{F}_{\delta}\right)$, and Theorem 4.2 has established $M_{D}\left(\mathcal{F}_{\delta}\right)=r_{D}(\delta)$. Thus we can assume $b \in\left(a, v_{3}\right)$ (i.e. Case 1 or 2 ). Note that in this situation $\beta=1$ and $\alpha \in\{0,1\}$.

The proof follows essentially the same outline as the proof of Statement 2 in Section 4.2. Fact 2, 3, 6 remain true; Fact 7, Lemmas 4.11, 4.12 are modified to the following.
Fact 8.

$$
\sum_{i, j} q_{i}^{\prime j}(t)= \begin{cases}2 \alpha & \text { if } t \in S_{0} \\ \beta & \text { if } t \in S_{1} \cup S_{2}\end{cases}
$$

Lemma 5.5. $Q\left(S_{0}\right)=2 p_{0} \alpha, Q\left(S_{1}\right)=p_{1} \beta$, and $Q\left(S_{2}\right)=p_{2} \beta$.
Lemma 5.6. $M_{B, \delta}\left(\mathcal{F}_{\delta}\right)=2 b\left(1-p^{n}\right)+a \sum_{0 \leq \ell \leq 2} Q\left(S_{\ell}\right)-\left(U\left(S_{1}\right)+U\left(S_{1}^{\prime}\right)+U\left(S_{2}^{\prime}\right)\right)$.
The two lemmas above are straightforward to prove. Finally, Lemma 4.13 is modified to the following:

Lemma 5.7.

$$
\begin{align*}
& U\left(S_{1}\right)=(b-a) \frac{1-p}{p} Q\left(S_{0}\right),  \tag{33}\\
& U\left(S_{1}^{\prime}\right)=(b-a) \frac{1}{2}\left(\left(\frac{1-p}{p}\right)^{2} Q\left(S_{0}\right)+\left(\frac{1-p}{p}\right) Q\left(S_{1}\right)\right),  \tag{34}\\
& U\left(S_{2}^{\prime}\right)=(b-a) \frac{1-p}{2 p} Q\left(S_{2}\right) . \tag{35}
\end{align*}
$$

The proof of Eqs. 33-34 is exactly the same as in the proof of Eqs. 18-19 in Lemma 4.13. The proof of Eq. 35 is also similar to the proof of Eq. 20 in Lemma 4.13. We omit the details here. Use Lemmas 5.5-5.7 and simplify, we obtain

$$
M_{B, \delta}\left(\mathcal{F}_{\delta}\right)=r_{B}(\delta)
$$

This proves Statement 4, and completes the proof of Theorem 5.2.

## REFERENCES

[1] M. Babaioff, N. Immorlica, B. Lucier, and S. M. Weinberg. 2014. A simple and aproximately optimal mechanism for an additive buyer. Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science(FOCS) (2014).
[2] K. C. Border. 1991. Implementations of reduced form auctions: a geometric approach. Econometrica 59, 4 (1991), 1175-1187.
[3] K. C. Border. 2007. Reduced form revisited. Economic Theory 31 (2007), 167-181.
[4] Y. Cai, C. Daskalakis, and S. M. Weinberg. 2012. An algorithmic characterization of multi-dimensional mechanisms. Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC) (2012), 459-478.
[5] Y. Cai, C. Daskalakis, and S. M. Weinberg. 2013. Reducing revenue to welfare maximization: approximation algorithms and other generalizations. Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2013), 578-595.
[6] Y. Cai, N. R. Devanur, and S. M. Weinberg. 2016. A duality based unified approach to Bayesian mechanism design. Proceedings of the 52th Annual ACM Symposium on Theory of Computing (STOC) (2016).
[7] S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan. 2010. Multi-parameter mechanism design and sequential posted pricing. Proceedings of the 42th Annual ACM Symposium on Theory of Computing (STOC) (2010), 311-320.
[8] X. Chen, I. Diakonikolas, D. Paparas, X. Sun, and M. Yannakakis. 2014. The complexity of optimal multidimensional pricing. Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2014).
[9] J. Cremer and R. P. McLean. 1988. Full extraction of the surplus in Bayesian and dominant-strategy auction. Economietrica 56 (1988), 1247-1257.
[10] C. Daskalakis, A. Deckelbaum, and C. Tzamos. 2014. The complexity of optimal mechanism design. Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2014).
[11] C. Daskalakis and S. M. Weinberg. 2012. Symmetries and optimal multi-dimensional mechanism design. Proceedings of the 13th ACM Conference on Electronic Commerce (2012), 370-387.
[12] M. Feldman, N. Gravin, and B. Lucier. 2015. Combinatorial auctions via posted price. Proceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2015), 123-135.
[13] A. Gershkov, J. K. Goeree, A. Kushnir, B. Moldovanu, and X. Shi. 2013. On the equivalence of Bayesian and dominantstrategy implementation. Econometrica 81 (2013), 197-220.
[14] Y. Giannakopoulos. 2014. Bounding the optimal revenue of selling multiple goods. arxiv report 1404.2832 (2014), 259-276.
[15] Y. Giannakopoulos. 2014. A note on selling optimally two uniformly distributed goods. arxiv report 1409.6925 (2014).
[16] Y. Giannakopoulos and E. Koutsoupias. 2014. Duality and optimality of auctions for uniform distributions. Proceedings of the 15th ACM Conference on Electronic Commerce (2014), 259-276.
[17] Y. Giannakopoulos and E. Koutsoupias. 2015. Selling two goods optimally. Proceedings of ICALP'15 (2015), 650-662.
[18] S. Hart and N. Nisan. 2012. Approximate revenue maximization with multiple items. Proceedings of the 13th ACM Conference on Electric Commerce (EC) (2012), 656.
[19] S. Hart and P. Reny. 2015. Maximizing revenue with multiple goods: Nonmonotonicity and other observations. Theoretical Economics 10 (2015), 893-992.
[20] J. D. Hartline, R. Kleinberg, and A. Malekian. 2011. Bayesian incentive compatability via matchings. Proceedings of the 22th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2011), 734-747.
[21] J. D. Hartline and T. Roughgarden. 2009. Simple mechanisms for a subadditive buyer and applications to revenue monotonicity. Proceedings of the 10th ACM Conference on Electronic Commerce (2009).
[22] X. Li and A. C. Yao. 2013. On revenue maximization for selling multiple independently distributed items. Proceedings of the National Academy of Sciences USA 110, 28 (2013), 11232-11237.
[23] A. M. Manelli and D. R. Vincent. 2006. Bundling as an optimal selling mechanism for a multiple-good monopolist. Journal of Economic Theory 127, 1 (2006), 1-35.
[24] R. B. Myerson. 1981. Optimal auction design. Mathematics of Operations Research 6, 1 (1981), 58-73.
[25] G. Pavlov. 2011. Optimal mechanism for selling two goods. The BE Journal of Theoretical Economics 11 (2011).
[26] A. Ronen. 2001. On approximating optimal auctions. Proceedings of the 3rd ACM Conference on Electric Commerce (EC) (2001), 11-17.
[27] A. Rubinstein and S. M. Weinberg. 2015. Simple mechanisms for a subadditive buyer and applications to revenue monotonicity. Proceedings of the 16th ACM Conference on Electronic Commerce (2015), 377-394.
[28] Z. Wang and P. Tang. 2014. Optimal mechanisms with simple menus. Proceedings of the 15th ACM Conference on Electronic Commerce (2014), 227-240.
[29] Z. Wang and P. Tang. 2016. Ironing the border: optimal auctions for negatively correlated items. Proceedings of the 17th ACM Conference on Electronic Commerce (2016).
[30] A. C. Yao. 2015. An n-to-1 bidder reduction for multi-item auctions and its applications. Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2015), 92-109.


[^0]:    ${ }^{1}$ Namely, for each buyer $i$, the valuation of a set $S$ of items is the sum of valuations for all the items in S .
    Author's email address: andrewcyao@tsinghua.edu.cn .
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
    EC'17, June 26-30, 2017, Cambridge, Massachusetts, USA. © 2017 ACM ISBN 978-1-4503-4527-9/17/06...\$15.00.
    DOI: http://dx.doi.org/10.1145/3033274.3085120

[^1]:    ${ }^{2}$ If $j$ is the cheap item in $t$, then $u_{i}\left(\tau_{t, i}\right) \geq u_{i}(t)+(b-a) q_{i}^{\prime j}(t)$. However, $q_{i}^{\prime j}(t)=\sum_{j^{\prime}} q_{i}^{\prime j^{\prime}}(t)$ in this case, since $q_{i}^{\prime j^{\prime}}(t)=0$ for $j^{\prime} \neq j$.

