Login [Center] Logout Join Us Guidelines  I  中文  I  CQI

Dongling Deng
Assistant Professor
Institute for Interdisciplinary Information Sciences


2010-2015,   Ph.D. in Physics, University of Michigan

                     Thesis: Topological Phases of Matter: Classification, Realization and Application

                     Kent M. Terwilliger Memorial Thesis Prize

2007-2010,   M. Sc. in Theoretical Physics, Chern Institute of Mathematics, Nankai Univeristy

                     Thesis: Topological Quantum Computation and Beyond

2003-2007,   B. S. in Physics and Mathematics, Nankai Univeristy



2018-           Assistant Professor, IIIS, Tsinghua University

2015-2018   Joint Quantum Institute Postdoctoral Fellow, University of Maryland


Research Interests

  •      >   Quantum Machine Learning & Artificial Intelligence
  •      >   Quantum Information, Computation, and Simulation
  •      >   Topological Phases of Matter, AMO Physics
  •      >   Quantum Nonequilibrium Systems, Many-body Localization


Honors, Awards & Fellowships

  •      >   2015   Kent M. Terwilliger Memorial Thesis Prize, University of Michigan
  •      >   2015   Joint Quantum Institute Postdoctoral Fellowship, University of Maryland
  •      >   2015   Niels Bohr Postdoctoral Fellowship, Niels Bohr Institute, Univerisity of Copenhagan, declined
  •      >   2010   Physics Department Fellowship, University of Michigan
  •      >   2008   First-Class Prize for Graduate Students, Nankai University
  •      >   2006   National Scholarship, Nankai University
  •      >   2004   First-Class Prize of Tianjin City Undergraduate Mathematic Competition, Tianjin


Professional Activities & Services

  •      >   Referee for peer-reviewed journals & conferences: Nature, Nature Physics, Physics Today, Phys. Rev. X, Phys. Rev. Lett.,  Nat. Commu., Nature Machine Intelligence,  Phys. Rev. A\B, New Journal of Physics,
  •           Scientific Report, Optical Express, Optical Letters, Physics Letters A, NPJ
  •           Quantum Information, TQC conferences, etc.
  •      >   Chair of conference sessions: Session H3 "Symmetry Protected Topological Phases", APS
  •            March Meeting, Los Angles, 2017; Session"Topological Order, Error Correction and Quantum
  •           Gates", Quantum Science, Gordon Research Conferences, Easton, 2016; Session B29
  •           "Quantum Spin Hall Effect", APS March Meeting, Baltimore, 2016; etc.
  •      >   Co-organizer of CMTC seminars, 2016-2017


Invited Talks (Partial List)

  •     -2018.4     CCQ Machine Learning and Quantum Many-Body Physics, "Measuring quantum
  •                      entanglement entropy through restricted Boltzmann machines", Flatiron Institute
  •     -2018.3     APS March Meeting, "Machine learning quantum states and many-body
  •                      entanglement", Los Angeles
  •     -2018.1     2nd Physics Informed Machine Learning Conference, "Machine learning quantum
  •                      states, many-body entanglement and Bell nonlocality", Los Alamos National Laboratory
  •     -2017.12   Workshop on Artificial Intelligence and Quantum Physics, "Machine Learning Bell
  •                      Nonlocality in Quantum Many-body Systems", Nanjing University
  •     -2017.7     Condensed Matter Seminar, "Machine learning quantum states and entanglement",
  •                      Peking University
  •     -2017.7     Quantum Information Seminar, "Machine learning quantum states and entanglement",
  •                      University of Science and Technology of China
  •     -2017.7     Condensed Matter Seminar, "Probe knots and Hopf insulators in both cold-atom and
  •                      solid-state quantum simulators", Fudan University
  •     -2017.6     International Conference on Machine Learning and Many-body Physics, "Machine   
  •                      learning and quantum entanglement", KITS, Beijing
  •     -2017.1     JQI 10th Anniversary Symposium, "Exact machine learning topological states",
  •                      University of Maryland
  •     -2015.2     Condensed Matter Seminar, "Probe knots and Hopf insulators with ultracold atoms",
  •                      C.N. Yang Institute for Theoretical Physics, Stony Brook
  •     -2014.7     Quantum Information Seminar, "Majorana quantum random number generators",
  •                      South China Normal University, Guangzhou
  •     -2014.6     CIM Quantum Information Seminar, "Quantum non-locality and certifiable Majorana
  •                      quantum random number generators", Chern Institute of Mathematics
  •     -2013.4     Condensed Matter Seminar, "Hopf insulators and their topologically protected surface
  •                      states", Indiana University at Bloomington
  •     -2011.11   Quantum Information Seminar, "Bell non-locality in conventional and topological
  •                      quantum phase transitions", National University of Singapore


Selected Publications (Google scholar profile)

  • [26] X. Zhang et al., Digital quantum simulation of Floquet symmetry-protected topological phases, Nature, 607, 468 (2022).
  • [25] W. Y. Gong, and D.-L. Deng*, Universal Adversarial Examples and Perturbations for Quantum Classifiers, National Science Reivew, in press (2021).
  • [24]   W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, X. Wang, H. L. Zhang, Y. F. Yu, X.-Y. Chang, Y. Q. Liu, D.-L. Deng*, and L.-M. Duan*, Observation of non-Hermitian topology with non-unitary dynamics of solid-state spins, Phys. Rev. Lett., 127, 090501 (2021).
  • [23]   L. Yu and D.-L. Deng*, Unsupervised Learning of Non-Hermitian Topological Phases, Phys.  Rev. Lett. 126, 240402 (2021).
  • [22]   D. Yuan, H.-R. Wang, Z. Wang*, and D.-L. Deng*, Solving the Liouvillian Gap with Artificial Neural Networks, Phys.  Rev. Lett., 126, 160401 (2021). 
  • [21]   Y.-H. Zhang, P.-L. Zheng, Y. Zhang*, and D.-L. Deng*, Topological Quantum Compiling with Reinforcement Learning, Phys. Rev. Lett., 125, 170501 (2020). 
  • [20]   S.-R. Lu, L.-M. Duan*, and D.-L. Deng*, Quantum adversarial machine learning, Phys. Rev. Research, 2, 033212 (2020).
  • [19]   Y.-B. Yang, T. Qin, D.-L. Deng, L.-M. Duan, and Y. Xu*, Topological Amorphous Metals, Phys. Rev. Lett., 123, 076401 (2019). [Highlighted as Editor's Suggestion].
  • [18]   W.-Q. Lian, S.-T. Wang, S.-R. Lu, Y.-Y. Huang, F. Wang, X.-X. Yuan, W.-G. Zhang, X.-L. Ouyang, X. Wang, X.-Z. Huang, L. He, X.-Y. Chang, D.-L. Deng*, and L.-M. Duan*, Machine Learning Topological Phases with a Solid-state Quantum Simulator, Phys. Rev. Lett., 122, 210503 (2019).
  • [17]   S. Das Sarma, D.-L. Deng, and L. -M. Duan, Machine learning meets quantum physics, Physics Today 72, 48 (2019).
  • [16]   L. Hu, S.-H. Wu, W. Z. Cai, Y. W. Ma, X. H. Mu, Y. Xu, H. Y. Wang, Y. P. Song, D.-L. Deng*, C. L. Zou*, and L. Y. Sun*, Quantum generative adversarial learning in a superconducting quantum circuit, Sci. Adv., 5, eaav2761 (2019). [Media coverage: New Scientist]
  • [15]   F.-L. Liu, J. R. Garrison, D.-L. Deng, Z.-X. Gong, and A. V. Gorshkov, Asymmetric Particle Transport and Light-Cone Dynamics Induced by Anyonic Statistics, Phys. Rev. Lett., 121, 250404 (2018). [Highlighted as Editor's Suggestion].
  • [14]   Y.-T. Hsu, X. Li, D.-L. Deng, and S. Das Sarma, Machine Learning Many-body Localization: Serarch for the Elusive Nonergodic Metal, Phys. Rev. Lett., 121, 245701 (2018).
  • [13]   D.-L. Deng, Machine Learning Detection of Bell Nonlocality in Quantum Many-Body Systems, Phys. Rev. Lett., 120, 240402 (2018).
  • [12]   D.-L. Deng, X. P. Li,  and S. Das Sarma, Quantum Entanglement in Neural Network States, Phys. Rev. X, 7, 021021 (2017). [Media coverage: JQI news, Deep Tech, Futurism, etc.]
  • [11]   D.-L. Deng, X. P. Li,  and S. Das Sarma, Exact Machine Learning Topological States, Phys. Rev. B (Rapid Communications), 96, 195145 (2017).
  • [10]   D.-L. Deng, S. Ganeshan, X.-P. Li, R. Modak, S. Mukerjee, and J. H. Pixley, Many-body localization in incommensurate models with a mobility edge, Annalen der Physik, 1600399 (2017). [invited topical review article for Annalen der Physik (Annals of Physics, Berlin)]
  • [9]     D.-L. Deng, J. H. Pixley, X.-P. Li, and Sankar Das Sarma, Exponential Orthogonality Catastrophe in Single-particle and Many-body Localized Systems, Phys. Rev. B (Rapid Comm.), 92, 220201 (2015).
  • [8]     D.-L. Deng, S.-T. Wang, L.-M. Duan, Direct Probe of Topological Order for Cold Atoms, Phys. Rev. A (Rapid Communications), 90, 041601 (2014).
  • [7]     S.-T. Wang, D.-L. Deng, and L.-M. Duan, Probe of Three-Dimensional Chiral Topological Insulators in an Optical Lattice, Phys. Rev. Lett., 113, 033002 (2014).  [Highlighted as Editor's Suggestion].
  • [6]     D.-L. Deng, S.-T. Wang, C. Shen, and L.-M. Duan, Hopf insulators and their topologically protected surface states, Phys. Rev. B (Rapid Communications), 88, 201105(R) (2013).
  • [5]     C. Zu, D.-L. Deng, P.-Y. Hou, X.-Y. Chang, F. Wang, and L.-M. Duan, Experimental Distillation of Quantum Nonlocality, Phys. Rev. Lett., 111, 050405 (2013).
  • [4]     D.-L. Deng, and L.-M. Duan,Fault-tolerant quantum random-number generator certified by Majorana fermions, Phys. Rev. A, 88, 012323 (2013).
  • [3]     X. Zhang, M. Um, J.-H. Zhang, S.-M An, Y. Wang, D.-L. Deng, C. Shen, L.-M. Duan, and Kihwan Kim, State-Independent Experimental Test of Quantum Contextuality with a Single Trapped Ion, Phys. Rev. Lett., 110, 070401 (2013).
  • [2]     C. Zu, Y.-X. Wang, D.-L. Deng, X.-Y. Chang, K. Liu, P.-Y. Hou, H.-X. Yang,and L.-M. Duan, State-Independent Experimental Test of Quantum Contextuality in an Indivisible System, Phys. Rev. Lett., 109,150401 (2012). Highlighted by the Physics Viewpoint article: "Mind the (Quantum) Context" by M.Paris and M. Paternostro, Physics 5, 113 (2012); Highlighted as Editor's Suggestion.
  • [1]     D.-L. Deng, C.-F. Wu, J.-L. Chen, and C. H. Oh, Fault-Tolerant Greenberger-Horne-Zeilinger Paradox Based on Non-Abelian Anyons, Phys. Rev. Lett., 105, 060402 (2010).


Open positions:

Students: Highly motivated and gifted students interested in quantum machine learning/artificial intelligence are welcome to join us (one Ph.D. student, and one or two undergraduates per year).

Postdoctors: One or two postdoc positions are avaliable.  The successful applicants will be expected to perform theoretical studies in one of the following directions: 1) quantum machine learning/artificial intelligence; 2) quantum information, computation, and simulation; 3) topological phases of matter; 4) Non-equilibrium quantum systems, many-body localization. Application package should include a Curriculum Vita with a publication list, a research statement, and three recommendation letters. The position is available immediately and the search is open until the position is filled.

For more information about the positions, please contact: dldeng@tsinghua.edu.cn.