Login [Center] Logout Join Us Guidelines  I  中文  I  CQI
Curriculum
7. Research Practice

Instructor: Professors from IIIS, Tsinghua University

Research Practice is a practical course in which students conduct research practices for one semester in renowned institutes both at home and abroad. Each student will be assigned a supervisor and participate in cutting-edge projects on theoretical computer science to carry out research-based activities. The course aims to get students involved in the latest development of theoretical computer science. It will cultivate a better understanding of the theory and applications among students and give them the opportunity to publish papers on their respective research practices. In this course, students are required to take part in formal presentations on research practices, including thesis proposal, mid-term and final defenses.

8. General Physics(1)

Instructor: Xiongfeng Ma

Calculus-based first physics course for physics majors and students with a serious interest in physics. Students are required to actively participate during the lectures, asking questions, and having questions asked. This class will provide you with an enhanced opportunity to acquire a good understanding of fundamental mechanics and thermodynamics and to learn how to apply this understanding to physics and beyond.

9. Introduction to Computer Networks

Instructor: Longbo Huang

This course aims at giving a comprehensive introduction to the fundamentals of computer networks and network performance analysis. The course contains two parts. The first part covers various networking topics including network principles, Ethernet, WiFi, routing, inter-networking, transport, WiMax and LTE, QoS, and physical layer knowledge. The second part presents mathematical techniques for modeling, analyzing and designing computer systems, including convex optimization, queueing theory, game theory and stochastic analysis. This course is intended for junior or senior undergraduate students in computer science or electrical engineering.

10. Quantum Communication and Cryptography

Instructor: Xiongfeng Ma

This course is offered to upper level undergraduate students, junior or senior students in the Yao Class, physics, EE, and computer science departments. The course will cover topics at the forefront of the new field of quantum communication and cryptography, including, for instance, foundation of quantum information, quantum entanglement, quantum cryptography, quantum communication, quantum random number generation, physical implementation of quantum communication and networks. The goal is to help the future researchers to find the interesting topics to work on.

11. Artificial Intelligence: Principles and Techniques

Instructor: Chongjie Zhang

This course will introduce the basic ideas and techniques underlying the design of intelligent computer systems. Specific topics include search, constraint satisfaction, game playing, graphical models, machine learning, Markov decision processes, and reinforcement learning. The main goal of the course is to equip students with the tools to tackle new AI problems you might encounter in life and also to serve as the foundation for further study in any AI area you choose to pursue.

12. Linear Algebra

Instructor: Yong Xu

Linear algebra finds wide applications in various fields, such as computer sciences, physics, mathematics and their interdisciplinary fields. This course introduces the basic concepts and techniques of linear algebra. It includes the study of matrices and their properties, linear transformations and vector spaces. Concrete topics include systems of linear equations, row reduction and Echelon form, vector equations, solution sets of a linear equation, linear independence, linear transformation, the matrix of linear transformation, matrix algebra, characterization of invertible matrices, determinants, subspaces, null spaces, column spaces, bases and dimension, rank, eigenvalues and eigenvectors, diagonalization, inner product, etc. By introducing the concepts through concrete examples, students will learn the basic concepts and methods of linear algebra, and their capacity to think from the linear algebra perspective will be systematically trained and enhanced.