清华大学交叉信息研究院

宋祎璞
职务: 研究员
Email:
地址: 北京市清华大学蒙民伟科技南楼309
电话: 8610-62773713


   I am currently a research fellow at the Institute for Interdisciplinary Information Science (IIIS), Tsinghua University. I received my Ph.D. in Physics from Peking University in 2005, where I was trained in nanofabrication and transport measurement in the electron microscopy laboratory. I was a post-doc from 2006-2007 at the University of Wisconsin-Madison, where I worked on spintronics nanodevices. In 2007, I moved to Michigan State University as a research associate, focusing on an experimental approach to acceptor-based quantum computing. From 2009 to 2012, I worked as a postdoctoral research fellow at the Institute for Quantum Computing, University of Waterloo, where my research was focused on single-electron devices for spin-based quantum information processing.

Research Interests:

     My research focuses on superconducting qubit and mesoscopic investigation of transport phenomena in quantum systems for quantum computing.

Current  Research Projects:

   Currently available superconducting architectures feature a layout in one dimension or in a “heavy-square” lattice, where each qubit has independent XY and Z control lines for gate operation and frequency tunability. Based on these chip architectures, quantum supremacy has been experimentally demonstrated and surface code error correction has also been proposed. However, any dysfunctional qubits in the lattice will cause breakpoints in the superconducting networks. In particular, as superconducting quantum processors have been made towards more complex networks of qubits, it becomes increasingly crucial to develop a robust superconducting architecture and reduce the resource consumption for qubit control. Existing theoretical proposals and experimental demonstrations of geometric quantum computing rely on the higher excited levels of the circuit and/or the frequency adjustability of the qubit transitions, both of which lead to severe decoherence. As such, it remains desired for a feasible scheme for geometric phase gate using microwave-only control on fixed-frequency qubits.

   We will address these challenges by achieving the key research objectives: (1) we will develop a new scalable superconducting architecture approach, which is feasible for hybrid surface code. This unique architecture can significantly reduce the resource consumption by individual qubit and efficiently avoid breakpoints of superconducting networks, thus improving the robustness of inter-connections of qubits with the coupling in a well controllable manner. (2) We will realize a new nonadiabatic multi-qubit geometric phase gate scheme, through segmented microwave drive on multiple qubits coupled off-resonantly to a common resonator, with a high gate fidelity owing to the robustness against certain control errors and decoherence. (3) With exploiting the robust superconducting architecture and geometric gate scheme, we will conduct large scale quantum simulation with many-body interactions.  

 

Publications:

[46] T.-Q. Cai, J.-H. Wang, Z.-L. Wang, X.-Y. Han, Y.-K. Wu*, Y.-P. Song*, and L.-M. Duan*, An all-microwave nonadiabatic multi-qubit geometric phase gate for superconducting Qubits, Submitted.

[45] T.-Q. Cai#X.-Y. Han#Y.-K. WuY.-L. MaJ.-H. WangZ.-L. WangH.-Y ZhangH.-Y WangY.-P. Song*L.-M. Duan*, Impact of Spectators on a Two-Qubit Gate in a Tunable Coupling Superconducting Circuit, Physical Review Letters, 127, 060505 (2021).

[44] Zenghui Bao, Zhiling Wang, Yukai Wu, Yan Li, Cheng Ma, Yipu Song, Hongyi Zhang*, and Luming Duan*, On-Demand Storage and Retrieval of Microwave Photons Using a Superconducting Multiresonator Quantum Memory, Physical Review Letters,127, 010503 (2021).

[43]J. Han, W. Cai, L. Hu, X. Mu, Y. Ma, Y. Xu, W. Wang, H. Wang, Y. P. Song, C.L. Zou*, and L. Sun*, Experimental Simulation of Open Quantum System Dynamics via Trotterization, Physical Review Letters, 127, 020504 (2021).

[42] Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z.-Y. Xue*, and L. Sun*, Experimental Implementation of Universal Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit, Physical Review Letters, 124, 230503 (2021).

[41] Z.L. Wang, Y.K. Wu, Z.H. Bao, Y. Li, C. Ma, H.Y Wang, Y.P. Song, H.Y. Zhang*, and L.M. Duan*, Experimental Realization of a Deterministic Quantum Router with Superconducting Quantum Circuits, Physical Review Applied, 15, 014049 (2021).

[40] X. Li#, T. Cai#, H. Yan, Z. Wang, X. Pan, Y. Ma, W. Cai, J. Han, Z. Hua , X. Han, Y. Wu, H. Zhang, H. Wang, Yipu Song*, Luming Duan*, and Luyan Sun*, Tunable Coupler for Realizing a Controlled-Phase Gate with Dynamically Decoupled Regime in a Superconducting Circuit,  Physical Review Applied, 14, 024070 (2020).

[39] X. Y. Han#, T. Q. Cai#, X. G. Li, Y. K. Wu, Y.W.Ma, Y. L. Ma, J. H. Wang, H. Y. Zhang, Y. P. Song*, and L. M. Duan*, Error analysis in suppression of unwanted qubit interactions for a parametric gate in a tunable superconducting circuit, Physical Review A, 102, 022619 (2020).

[38] Y. Ma, Y.Xu, X.Mu, W.Cai, L.Hu, W.Wang, X. Pan, H.Wang, Y. P. Song, C-L Zou*, L.Sun*, Error-transparent operations on a logical qubit protected by quantum error correction, Nature Physics, 16, 1745 (2020).

[37] Y. Xu, Y. Ma, W. Cai, X. Mu, W. Dai, W. Wang, L. Hu, X. Li, J. Han, H. Wang, Y. P. Song, Z. B. Yang*, S.B. Zheng*, L. Sun*, Demonstration of Controlled-Phase Gates between Two Error-Correctable Photonic Qubits, Physical Review Letters, 2020, 124: 0031-9007.

[36] C. Ma, Z.L. Wang, Y.K. Wu, Z.H. Bao, Y.P. Song, H.Y. Zhang*, and L.M. Duan*Four-spin cross relaxation in a hybrid quantum device, Physical Review A, 100, 012322 (2019).

[35] W. Cai, J. Han, Feng Mei*, Y. Xu, Y. Ma, X. Li, H. Wang, Y. P. Song, Z.Y. Xue, Z.Q. Yin, S.T. Jia, and L.Y. Sun*, Observation of Topological Magnon Insulator States in a Superconducting Circuit, Physical Review Letters, 123, 080501 (2019). 

[34] Y.L. Ma, T.Q. Cai, X.Y. Han, Y.W. Hu, H.Y. Zhang, H.Y. Wang, L.Y. Sun, Y.P. Song*, and L.M. Duan*, Andreev bound states in a few-electron quantum dot coupled to superconductors, Physical Review B, 99, 035413 (2019).

[33] Y.P. Song#*, Y.W. Hu, Quantum interference in InAs/InAlAs core-shell nanowires, Applied Physics Letters, 113, 143104 (2018).

[32] X.LiY. MaJ. HanTao ChenY. XuW. CaiH. WangY. P. SongZ.Y. Xue*, Z.Q.Yin*, L.Y. Sun*, Perfect remote quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Physical Review Applied, 10, 054009 (2018).                                

[31] L.HuY.W. MaW.Z. CaiX.H. MuY. XuW.T. WangY.K. WuH.Y. WangY.P. SongC.L. Zou*, S. M. GirvinL.M. DuanL.Y. Sun*, Quantum error correction and universal gate set operation on a binomial bosonic logical qubit, Nature Physics, 15, 503 (2019).     

[30] L.HuS.H. WuW.Z. CaiY.W.MaX.H. MuY. XuH.Y. WangY.P. SongD.L. Deng*, C.L. Zou*, L.Y. Sun*, Quantum generative adversarial learning in a superconducting quantum circuit, Science Advances, 5, eaav2761 (2019).  

[29] L.HuX.H.MuW.Z. CaiY.W. MaY. XuH.Y. WangY.P. SongC.L. Zou*, L.Y. Sun*, Experimental repetitive quantum channel simulation, Science Bulletin, 63, 1551 (2018).

[28] L. Hu, Y.C. Ma, Y. Xu, W.T. Wang, Y.W. Ma, K. Liu, H.Y. Wang, Y.P. Song, M.H. Yung*, L.Y. Sun*, Simulating molecular spectroscopy with circuit quantum electrodynamics, Science Bulletin, 63, 293 (2018).

[27] Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, Tao Chen, H. Wang, Y. P. Song, Z.Y Xue*, Z.Q. Yin, and L. Sun, Single-Loop Realization of Arbitrary Nonadiabatic Holonomic Single-Qubit Quantum Gates in a Superconducting Circuit, Physical Review Letters, 121, 110501 (2018).

[26] Y.W. Hu, Y.P. Song*, and L.M. Duan*, Quantum interface between a transmon qubit and spins of nitrogen-vacancy centers, Physical Review A, 96, 062301 (2017).

[25] H.N. Xiong, W.T. Jiang, Y.P. Song and L.M. Duan*, Bound state properties of ABC-stacked trilayer graphene quantum dots, Journal of Physics: Condensed Matter, 29, 215002 (2017).

[24] Y.W. Hu, C.T. JiX.X WangJ.R. HuoQ. Liu, Y.P. Song*, The structural, magnetic and optical properties of TMn@(ZnO)42 (TM = Fe, Co and Ni) hetero-nanostructure, Scientific Reports, 7, 16485 (2017).

[23] W. Wang, L. Hu, Y. Xu, K. Liu, Y. Ma, S-B. Zheng*, R. Vijay, Y. P. Song, L.M. Duan*, and L.Y.Sun*, Converting quasiclassical states into arbitrary Fock state superpositions in a superconducting circuit, Physical Review Letters, 118, 223604 (2017).

[22] K. Liu, Y. Xu, W. Wang, Shi-Biao Zheng, Tanay Roy, Suman Kundu, Madhavi Chand, A. Ranadive, R. Vijay, Y. P. Song, L.M. Duan* and L.Y. Sun*, A two-fold quantum delayed-choice experiment enabled by a which-path detector, Science Advances, 2017, 3: e1603159.

[21] Y.P. Song#*, H.N. Xiong, W.T. Jiang, H.Y. Zhang, X. Xue, C. Ma, Y.L. Ma, L.Y. Sun, H.Y. Wang, and L.M. Duan*, Coulomb oscillations in a gate-controlled few-layer graphene quantum dot, Nano Letters, 16, 6245 (2016).

[20] G.W. Holloway*, Y.P. Song*, C.M. Haapamaki, R.R. LaPierre, and J. Baugh, Electron transport in InAs-InAlAs core-shell nanowires, Applied Physics Letters, 102, 043115 (2013).    

[19] N. Gupta*, Y.P. Song*, C.M. Haapamaki, U. Sinha, R.R. LaPierre and J. Baugh, Temperature dependent electron mobility in InAs nanowires, Nanotechnology, 24, 225202 (2013). 

[18] G.W. Holloway, Y.P. Song, C.M. Haapamaki, R.R. LaPierre, and J. Baugh*, Trapped charge dynamics in InAs nanowires, Journal of Applied Physics, 113, 024511 (2013).

[17] Y.P.Song* and B.Golding, Manipulation and decoherence of acceptor states in silicon, Europhysics Letters., 95, 47004 (2011).

[16] Y.P.Song, A.L.Schmitt, and S.Jin*, Spin-dependent tunneling transport into CrO2 nanorod devices with nonmagnetic contacts, Nano Letters, 8, 2356 (2008).

[15] Y.P.Song, A.L.Schmitt, and S.Jin*, Ultralong single-crystal metallic Ni2Si nanowires with low resistivity, Nano Letters, 7, 965 (2007).

[14] Y.P.Song, and S.Jin*, Synthesis and Properties of Single-Crystal Ni3Si nanowires, Applied Physics Letters, 90, 173122 (2007).

[13] Y.P.Song, H.Z.Zhang, C.Lin, Y.W. Zhu, G.H.Li, F.H.Yang, and D.P.Yu*, Luminescence emission originating from nitrogen doping of Ga2O3 nanowires, Physical Review B, 69, 075304 (2004).

[12] Y.P.Song, P.W.Wang, H.Q.Lin, G.S.Tian, J.Lu, Z.Wang,Y.Zhang, and D. P. Yu*, Physical origin of the ferromagnetic ordering above room temperature in GaMnN nanowires, Journal of Physics: Condensed Matter, 17, 5073 (2005).

[11] Y.P.Song, P.W.Wang, X.H.Zhang, J.Xu, G.H.Li, and D.P.Yu*, Magnetism and luminescence evolution due to nitrogen doping in manganese-gallium oxide nanowires, Physics Letters A, 351,302 (2006).

[10] Y.P.Song, P.W.Wang, X.Y.XU, R.M.Wang, Z.Wang, G.H.Li, and D.P.Yu*, Magnetism and photoluminescence in manganese-gallium oxide nanowires with monoclinic and spinel structures, Physica E, 31,67 (2006).

[9] Y.P.Song* and H.Xu, Direct current hopping conductivity in one-dimensional nanometer systems, Chinese Physics Letters, .Phys. Lett, 20,277 (2003).

[8] P.W. Wang, Y.P.Song, X.Z. Zhang and D.P.Yu*, Transformation from beta-Ga2O3 to GaN nanowires via nitridation, Chinese Physics Letters, 25,1038 (2008).

[7] Z.M.Liao, J.Xu, Y.P.Song, Y. Zhang, Y.J.Xing, and D.P.Yu*, Quantum interference effect in single Pt(Ga)/C nanowire, Applied Physics Letters, 87,182112 (2005).

[6] X.H.Zhang,Y.Zhang,Y.P.Song, and D.P.Yu*, Optical properties of ZnS nanowires synthesized via simple physical evaporation, Physica E, 28, 1 (2005).

[5] H.Xu*, Y.P.Song and X.M.Li, Hopping conductivity studies on one-dimensional disordered systems, Acta Physics, 51, 143 (2002) (in Chinese).

[4] H.Xu* and Y.P.Song, Study of AC hopping conductivity on one-dimensional nanometer systems, Chinese Physics, 11, 1294 (2002).

[3] H.Xu* and Y.P.Song, AC Hopping conductivity studies on one-dimensional disordered systems, Acta Physics, 51, 1798 (2002) (in Chinese).

[2] H.Xu*, Y.P.Song and X.M.Li, Conduction mechanism studies on electron transfer of disordered system, Journal of Central South University, 9,134(2002).

[1] H.Xu*, Y.P.Song and Y.F.Li, The electronic structure of one-dimension nanometer system, Journal of Central South University, 33,107(2002) (in Chinese).

Patent:

[3] 一种超导量子比特芯片,专利号ZL201811216710.2,中国,申请日期: 2018-10-18,授权日期:2021-04-23,发明人:段路明, 宋祎璞,  张宏毅.

[2] 一种量子计算机,专利号ZL201910024856.5,中国,申请日期: 2019-01-11,授权日期:2020-11-16,发明人:段路明, 宋祎璞,  张宏毅.

[1] S.Jin, A.L.Schmitt, and Y.P.Song, Metal silicide nanowires and methods for their production, United States Patent, Patent No.: US 7,803,707 B2 (2010).

Research funding:

[2] Grant funding from the Natural Science Foundation of China under Grant No.11874235, 2018.

[1] Grant funding from the State's Key Project of Research and Development Plan under Grant No.2016YFA0301902, 2016.