清华大学交叉信息研究院

张宏毅

副研究员

Email:
办公地址: MMW-S305-4
研究方向: 超导量子信息处理,微波量子光学和量子器件



 I am currently an associate research fellow at the Institute for Interdisciplinary Information Science (IIIS), Tsinghua University. I received my Ph.D. from the Institute of Semiconductors, Chinese Academy of Sciences in 2014. I was a post-doc from 2014 to 2016 at IIIS, Tsinghua University. My research interest covers superconducting quantum information processing, microwave quantum optics and quantum devices.

 

Selected Publications:

[28] Yan Li, Zenghui Bao, Zhiling Wang, Yukai Wu, Jiahui Wang, Jize Yang, Haonan Xiong, Yipu Song, Hongyi Zhang*, and Luming Duan*. Quantum switch for itinerant microwave single photons with superconducting quantum circuits. Phys. Rev. Appl., 21:044030, Apr 2024.

[27] Yan Li, Zhiling Wang, Zenghui Bao, Yukai Wu, Jiahui Wang, Jize Yang, Haonan Xiong, Yipu Song, Hongyi Zhang*, and Luming Duan*. Frequency-tunable microwave quantum light source based on superconducting quantum circuits.  Chip, 2(3):100063, 2023.

[26] Zhiling Wang, Zenghui Bao, Yan Li, Yukai Wu, Weizhou Cai, Weiting Wang, Xiyue Han, Jiahui Wang, Yipu Song, Luyan Sun, Hongyi Zhang*, and Luming Duan*. An ultra-high gain single-photon tran- sistor in the microwave regime. Nature Communications, 13(1):6104, October 2022.

[25] Zhiling Wang, Zenghui Bao, Yukai Wu, Yan Li, Weizhou Cai, Weiting Wang, Yuwei Ma, Tianqi Cai, Xiyue Han, Jiahui Wang, Yipu Song, Luyan Sun, Hongyi Zhang*, and Luming Duan*. A flying schro¨ dinger cat in multipartite entangled states. Science Advances, 8(10):1–7, 2022.

[24] Zenghui Bao, Zhiling Wang, Yukai Wu, Yan Li, Weizhou Cai, Weiting Wang, Yuwei Ma, Tianqi Cai, Xiyue Han, Jiahui Wang, Yipu Song, Luyan Sun, Hongyi Zhang*, and Luming Duan*. Experimental preparation of generalized cat states for itinerant microwave photons. Physical Review A, 105(6):063717, 2022.

[23] J.-H. Wang, T.-Q. Cai, X.-Y. Han, Y.-W Ma, Z.-L Wang, Z.-H Bao, Y. Li, H.-Y Wang, Hongyi Zhang, L.-Y Sun, Y.-K. Wu*, Y.-P. Song*, and L.-M. Duan*. Information scrambling dynamics in a fully con- trollable quantum simulator. Phys. Rev. Research, 4:043141, Nov 2022.

[22] Zhiling Wang, Zenghui Bao, Yukai Wu, Yan Li, Cheng Ma, Tianqi Cai, Yipu Song, Hongyi Zhang*, and Luming Duan*. Improved superconducting qubit state readout by path interference. Chinese Physics Letters, 38(11):110303, 2021.

[21] Zenghui Bao, Zhiling Wang, Yukai Wu, Yan Li, Cheng Ma, Yipu Song, Hongyi Zhang*, and Luming Duan*. On-demand storage and retrieval of microwave photons using a superconducting multiresonator quantum memory. Physical Review Letters, 127(1):010503, 2021.

[20] T.-Q. Cai, X.-Y. Han, Y.-K. Wu, Y.-L. Ma, J.-H. Wang, Z.-L. Wang, Hongyi Zhang, H.-Y Wang, Y.-P. Song*, and L.-M. Duan*. Impact of spectators on a two-qubit gate in a tunable coupling superconduct- ing circuit. Physical Review Letters, 127:060505, 2021.

[19] Zhiling Wang, Yukai Wu, Zenghui Bao, Yan Li, Cheng Ma, Haiyan Wang, Yipu Song, Hongyi Zhang*, and Luming Duan*. Experimental realization of a deterministic quantum router with superconducting quantum circuits. Physical Review Applied, 15(1):014049, 2021.

[18] X. Li, T. Cai, H. Yan, Z. Wang, X. Pan, Y. Ma, W. Cai, J. Han, Z. Hua, X. Han, Y. Wu, Hongyi ZhangH. Wang, Yipu Song*, Luming Duan*, and Luyan Sun*. Tunable coupler for realizing a controlled- phase gate with dynamically decoupled regime in a superconducting circuit. Physical Review Applied, 14(2):024070,  2020.

[17]  XY Han, TQ Cai, XG Li, YK Wu, YW Ma, YL Ma, JH Wang,  Hongyi Zhang, YP Song*, and  LM Duan*. Error analysis in suppression of unwanted qubit interactions for a parametric gate in a tunable superconducting circuit. Physical Review A, 102(2):022619, 2020.

[16] Yulin Ma, Tianqi Cai, Xiyue Han, Yaowen Hu, Hongyi Zhang, Haiyan Wang, Luyan Sun, Yipu Song*, and Luming Duan*. Andreev bound states in a few-electron quantum dot coupled to superconductors. Physical Review B, 99(3):035413, 2019.

[15] Cheng Ma, Zhiling Wang, Yukai Wu, Zenghui Bao, Yipu Song, Hongyi Zhang*, and Luming Duan*. Four-spin cross relaxation in a hybrid quantum device. Physical Review A, 100(1):012322, 2019.

[14] Y.-Y. Huang, Y.-K. Wu, F. Wang, P.-Y. Hou, W.-B. Wang, W.-G. Zhang, W.-Q. Lian, Y.-Q. Liu, H.-Y. Wang, Hongyi Zhang, L. He, X.-Y. Chang, Y. Xu, and L.-M. Duan*. Experimental realization of robust geometric quantum gates with solid-state spins. Physical Review Letters, 122(1):010503, 2019.

[13] Xiaofei Wu, Ping Jiang, Gary Razinskas, Yongheng Huo, Hongyi Zhang, Martin Kamp, Armando Rastelli, Oliver G. Schmidt, Bert Hecht, Klas Lindfors*, and Markus Lippitz*. On-chip single-plasmon nanocircuit driven by a self-assembled quantum dot. Nano letters, 17(7):4291–4296, 2017.

[12] Yipu Song*, Haonan Xiong, Wentao Jiang, Hongyi Zhang, Xiao Xue, Cheng Ma, Yulin Ma, Luyan Sun, Haiyan Wang, and Luming Duan*. Coulomb oscillations in a gate-controlled few-layer graphene quantum dot. Nano letters, 16(10):6245–6251, 2016.

[11] Hongyi Zhang, Yongheng Huo, Klas Lindfors*, Yonghai Chen, Oliver G Schmidt, Armando Rastelli, and Markus Lippitz*. Narrow-line self-assembled GaAs quantum dots for plasmonics. Applied Physics Letters, 106(10):101110, 2015.

[10] Markus Pfeiffer, Klas Lindfors, Hongyi Zhang, Bernhard Fenk, Fritz Phillipp, Paola Atkinson, Ar- mando Rastelli, Oliver G Schmidt, Harald Giessen, and Markus Lippitz*. Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot. Nano letters, 14(1):197– 201, 2014.

[9] HS Gao, Y Liu, Hongyi Zhang, SJ Wu, CY Jiang, JL Yu, LP Zhu, Y Li, W Huang, and YH Chen*. Microscopic reflection difference spectroscopy for strain field of GaN induced by berkovich nanoinden- tation. Applied Physics Letters, 104(5):053106, 2014.

[8] Hongyi Zhang*, Yonghai Chen, Xiaolong Zhou, Yanan Jia, Xiaoling Ye, Bo Xu, and Zhanguo Wang. Observation of photo darkening in self assembled InGaAs/GaAs quantum dots. Journal of Applied Physics, 113(17):173508, 2013.

[7] Hongyi Zhang*, Yu Liu, Xiaoling Ye, and Yonghai Chen. Photo-instability of CdSe/ZnS quantum dots in poly (methylmethacrylate) film. Journal of Applied Physics, 114(24):244308, 2013.

 [6] Hongyi Zhang, Yonghai Chen*, Guanyu Zhou, Chenguang Tang, and Zhanguo Wang. Wetting layer evolution and its temperature dependence during self-assembly of InAs/GaAs quantum dots. Nanoscale research letters, 7(1):1–6, 2012.

[5] Hongyi Zhang, YH Chen*, and ZG Wang. Investigation of wetting layers in InAs/GaAs self-assembled nanostructures with reflectance difference spectroscopy. Reviews in Nanoscience and Nanotechnology, 1(3):200–216, 2012.

[4] Hongyi Zhang, Jianling Zhao*, Yuying Jia, Xuewen Xu, Cencun Tang, and Yangxian Li. Exploration of artificial neural network to predict morphology of T iO2 nanotube. Expert Systems with Applications, 39(4):4094–4101, 2012.

[3] JL Yu, YH Chen*, CY Jiang, XL Ye, and Hongyi Zhang. Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser. Journal of Applied Physics, 111(4):043109, 2012.

[2] XL Zhou*, YH Chen, Hongyi Zhang, GY Zhou, TF Li, JQ Liu, XL Ye, Bo Xu, and ZG Wang. Car- rier tunneling effects on the temperature dependent photoluminescence of InAs/GaAs quantum dot: simulation and experiment. Journal of Applied Physics, 109(8):083501, 2011.

[1] XL Zhou*, YH Chen, TF Li, GY Zhou, Hongyi Zhang, XL Ye, Bo Xu, and ZG Wang. Effects of ultra- low Al alloying In(Al)As layer on the formation and evolution of InAs/GaAs quantum dots. Journal of Applied Physics, 109(9):094311, 2011.

* corresponding author